Le poly(acide lactique), PLA, est un polymère biocompatible et biodégradable, qui peut être
produit à partir de ressources renouvelables. En conséquence, il a soulevé une attention toute
particulière en tant que remplacement éventuel des polymères à base de pétrole. C’est un
polyester aliphatique ayant des propriétés telles que module élevé, haute résistance,
biocompatibilité et est donc un matériau prometteur pour diverses applications telles que les
implants, l’encapsulation de médicaments et l'emballage. A cause de sa faible température de
transition vitreuse, le PLA a une faible résistance thermique et les applications sont donc
limitées à celles qui ne sont pas associées à des températures élevées. En outre, ce polymère
souffre d'un faible degré de cristallinité. L'augmentation du taux de cristallinité dans de
nombreuses techniques de mise en forme, telles que le moulage par injection, est nécessaire.
Il y a plusieurs façons d'augmenter le niveau de cristallinité du PLA. Ces procédés
comprennent l'utilisation d'agents nucléants, de plastifiants, ou de combinaisons d'agents
plastifiants et de nucléation. La cristallisation du PLA à l'état fondu se présente sous deux
formes cristallines légèrement différentes connues sous les noms α et α'. Cette étude compare
la capacité d'auto-nucléation de ces deux formes cristallines par auto-nucléation. Ceci est
réalisé en comparant les températures de cristallisation lors du refroidissement des
échantillons préalablement cristallisés à diverses températures, puis de nouveau chauffé à une
température dans la plage de fusion partielle du PLA. Dans la deuxième étape, l'effet des
paramètres cinétiques et le poids moléculaire du PLA sur l'efficacité de nucléation des PLA
phases cristallines a été étudié. Cette partie de l’étude ouvre une nouvelle voie pour
comprendre le rôle des modifications cristallines du PLA qui mènent aux conditions optimales
pour la cristallisation du PLA. La mise en forme des polymères implique des contraintes de
cisaillement et d’élongation, ce qui implique une cristallisation induite par l’écoulement et la
solidification qui s’en suit. Les propriétés mécaniques des produits finals dépendent du degré
de cristallisation et de la nature des cristaux formés. Par conséquent, l'optimisation du procédé
nécessite une bonne compréhension de la façon dont l’écoulement influence la cristallisation.
Le type d'écoulement peut jouer un rôle important sur la cristallisation. Par exemple,
l'écoulement élongationnel provoque l’orientation et l’étirement des molécules dans le sens de
l'extension, comme dans le cas de la mise en forme de fibres et le soufflage de film, en aidant
le processus de cristallisation induite par l'écoulement. Une littérature abondante existe sur la
ii
cristallisation des thermoplastiques classiques induite par l'écoulement. Cela dit, moins
d'attention a été accordée à l'effet de l'écoulement de cisaillement et d'allongement sur la
cristallisation du PLA. Comme étudié dans la dernière partie de ce document, l'effet du poids
moléculaire sur la cristallisation induite par cisaillement du PLA est rapporté. Pour cela, trois
différents PLA à faible, moyen et haut poids moléculaire ont été préparés par réaction
d'hydrolyse. Ensuite, en utilisant un rhéomètre oscillatoire, l’effet du cisaillement sur la
cinétique de cristallisation du PLA a été examiné. / Abstract : Poly(lactic acid), PLA, is a biocompatible and biodegradable polymer that can be produced
from renewable resources. As a result, it has raised particular attention as a potential
replacement for petroleum-based polymers. It is an aliphatic polyester with properties such as
high modulus, high strength, and biocompatibility and is thus a promising material for various
applications such as implants, drug encapsulation, and packaging. In the wake of low glass
transition temperature, PLA has a low heat resistance and its application is limited to those not
associated with high temperatures. In addition, this polymer suffers from a low degree of
crystalinity. Increasing the crystallization rate in many processing operations, such as injection
molding, is required.
So far, many routes have been found to improve the crystallinity of PLA. These methods
include using nucleating agents, plasticizers, and combination of nucleating agents and
plasticizers together. PLA crystallization in the melt state results in two slightly different
crystalline forms known as α and α’forms. This thesis compares the self-nucleation ability of
these two crystal forms by self-nucleation. This is achieved by comparing crystallization
temperatures upon cooling for samples previously crystallized at various temperatures and
then re-heated to a temperature in the partial melting range for PLA. In the second step, we
study the effect of molecular weight of PLA on the nucleation efficiency of PLA crystalline
phases. This part of the investigation opens a new pathway to understand the role of PLA
crystalline phases on the optimal condition for its crystallization kinetics.
Polymer processing operations involve mixed shear and elongational flows and cause polymer
molecules to experience flow-induced crystallization during flow and subsequent
solidification. The mechanical properties of the final products are significantly dependent
upon the degree of crystallization and types of formed crystals. Therefore, optimization of any
polymer process requires a good understanding of how flow influences crystallization. The
type of flow can play a significant role in affecting crystallization. For example, elongational
flow causes molecules to orient and stretch in the direction of extension, as in the case of fiber
spinning and film blowing, helping the process of flow-induced crystallization. An extensive
body of literature exists on flow-induced crystallization of conventional thermoplastics.
Having said that, less attention has been paid to the effect of shear and elongational flow on
the PLA crystallization kinetics. As investigated in the final part of this thesis, the effect of
iv
molecular weight on the shear-induced crystallization of PLA is reported. For this, low,
medium and high molecular-weight PLAs were prepared from a high molecular weight one by
a hydrolysis reaction. Next, by means of a simple rotational rheometry, effect of the shear flow
was examined on the crystallization kinetics of these three PLAs.
Identifer | oai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/9892 |
Date | January 2017 |
Creators | Jalali, Amirjalal |
Contributors | Huneault, Michel, Elkoun, Saïd |
Publisher | Université de Sherbrooke |
Source Sets | Université de Sherbrooke |
Language | English |
Detected Language | French |
Type | Thèse |
Rights | © Amirjalal Jalali |
Page generated in 0.0087 seconds