Dans le processus de conception des véhicules, la vibration et le bruit sont des sujets d’étude très importants. En effet, les vibrations sont susceptibles d’affecter le comportement dynamique des structures et le bruit dégrade le confort acoustique des passagers. L’objectif principal de la thèse est de proposer un ensemble de méthodes pour l’optimisation du comportement dynamique des systèmes complexes afin de réduire les vibrations des structures et le bruit dans l’habitacle. À cet effet, on s’intéresse à des stratégies de contrôle des interfaces, comme le collage de couches viscoélastiques sur les zones les plus déformées, ou l’introduction de dispositifs frottants calibrés pour ajouter de l’amortissement à certaines fréquences de résonance. Les structures assemblées résultantes sont étudiées numériquement par une méthode de synthèse modale généralisée. La méthode de synthèse modale proposée contient plusieurs niveaux de condensation. Le premier concerne les degrés de libertés (DDL) internes de chaque sous-structure. La deuxième condensation s’effectue sur les modes de branches, de sorte à réduire le nombre de DDL aux interfaces entre les sous-structures. Pour les systèmes couplés fluide/structure, une troisième condensation portant sur les DDL du fluide est proposée. Suite à ces condensations, la dimension du système est fortement réduite. Cette méthode permet alors d’obtenir aussi bien la réponse forcée de la structure que les fluctuations du champ de pression dans le fluide. Les chemins de transmission acoustiques et vibratoires peuvent également être déduits des contributions modales intermédiaires. On montre que ces paramètres modaux peuvent être utilisés comme fonctions objectif pour une démarche d’optimisation des interfaces. Le front de Pareto des conceptions optimales est obtenu avec un algorithme génétique multi-objectif élitiste, appliqué à une approximation par krigeage de la fonction objectif. Cette approche modale est étendue à l’étude de systèmes non-linéaires. L’hypothèse fondamentale est que les modes non-linéaires sont faiblement couplés. Les paramètres modaux non-linéaires (fréquences propres, amortissements...), dépendent des amplitudes modales. L’idée est alors de calculer des modes normaux non-linéaires en fonction de leur amplitude et de superposer leurs réponses pour obtenir celle de la structure. La méthode est appliquée à des systèmes incorporant des non-linéarités de type Duffing et de frottement sec. Le cas particulier du frottement sec est considéré à travers un modèle de Masing généralisé. Deux approches modales sont développées : l’une basée sur les modes complexes, et l’autre basée sur les modes réels. L’utilisation de modes complexes ou réels dans la synthèse modale conduit à des termes d’amortissement par frottement différents. On montre que la synthèse modale non-linéaire combinée au modèle de Masing généralisé aboutit à une méthode numérique simple, rapide et efficace pour décrire le comportement non-linéaire de structures soumise à du frottement sec. / Noise and vibration are important topics in the automotive industry for several reasons, including passenger comfort and structural integrity. The main objective of this thesis is to propose a series of appropriate methods to optimize structural system characteristics, so that the vibration and noise can be reduced. To achieve this goal, interface control strategies are employed, including bonding viscoelastic layers onto the most heavily deformed zones and introducing frictional damping devices calibrated on certain resonance frequencies. Such built-up structural systems are numerically investigated via a generalized modal synthesis approach that incorporates several groups of modes. The employed modal synthesis approach consists of several levels of condensation. The first one is on the internal degrees of freedoms (DOFs) of each substructure, and the second condensation is on the branch modes so as to reduce the boundary DOFs among substructures. For coupled fluid-structural systems, a third condensation on the fluid DOFs is suggested. With these condensation techniques, the system dimension can be significantly reduced. The method allows us to obtain the forced response of the structures as well as the pressure variation of the fluids. Additionally, modal parameters characterizing vibration and noise transmission paths can be deduced as mid-stage results. We show that these modal parameters can be used as optimization objective during the interface configuration design. The Pareto front of the optimal design is achieved by employing Kriging approximations followed with an elitist multi-objective genetic algorithm. Another advantage of the modal approach is that a modal overview on the system characteristics is provided by analyzing the natural frequencies, modal damping ratios and the aforementioned modal parameters. The modal synthesis approach is further extended to study nonlinear systems. The basic assumption is that the nonlinear modes are weakly coupled. Nonlinear modal parameters, such as modal frequency and modal damping ratio, contain the essential nonlinear information and depend on modal amplitude. The main idea is to compute nonlinear normal modes according to their modal amplitude and superimpose the response of several nonlinear modes to obtain the overall forced response. The method is applied to systems involving Duffing and dry friction nonlinearities. In the case of dry friction, a generalized Masing model is considered to capture the dry friction nature. Both complex modes and real modes are used in the modal synthesis, leading to different frictional damping terms. We show that the nonlinear modal synthesis combined with the generalized Masing model yields a simple, fast and efficient numerical method to describe nonlinear performance of structures with dry friction.
Identifer | oai:union.ndltd.org:theses.fr/2016LYSEC038 |
Date | 21 November 2016 |
Creators | Huang, Xingrong |
Contributors | Lyon, Jézéquel, Louis, Besset, Sébastien, Li, Lin |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds