Return to search

Biomarkers in perch (<i>Perca fluviatilis</i>) used in environmental monitoring of the Stockholm recipient and background areas in the Baltic Sea

<p>This thesis reports the results of biomarker measurements in three environmental monitoring projects. In the first project, which was part of the Swedish national environmental monitoring, biomarkers were measured annually in female perch (<i>Perca fluviatilis</i>) in two background areas in the Baltic Sea during 1988–2000, resulting in a unique 13-year series of measurements. The most important results were a strong decreasing temporal trend in the gonadosomatic index (GSI) and a strong increasing temporal trend in the hepatic ethoxyresorufin O-deethylase (EROD) activity in the Baltic Proper. In the second project, biomarkers and concentrations of classic pollutants were measured in female perch in the Stockholm recipient 1999–2001. This was the first time a large city was investigated as a point source of pollution, and the gradient was longer and included more stations than customary. Severe pollution conditions in central Stockholm were indicated by the poor health status of the perch: retarded growth, decreased frequency of sexually mature females, low GSI, disturbed visceral fat metabolism, increased hepatic EROD activity, decreased muscle acetylcholinesterase activity, increased frequency of hepatic DNA adducts, and a high concentration of biliary 1-pyrenol. Muscle ΣDDT and ΣPCB were measured as pollution indicators and were 10–28 respectively 12–35 times higher than the background levels in perch from the Baltic Proper. In the Stockholm archipelago two superimposed gradients were found. Whereas the response of several biomarkers consistently decreased with increasing distance from central Stockholm, the response of others first decreased from Stockholm to the middle archipelago and then increased to the open Baltic Sea. The latter biomarkers included the frequency of sexually mature females, GSI, hepatic EROD activity, and hepatic DNA adducts. In the third project, potential toxicity from munitions on the seafloor, at a dumpsite in the Stockholm archipelago, was analysed by the nanoinjection of sediment extracts into newly fertilised rainbow trout (<i>Oncorhynchus mykiss</i>) eggs, followed by the measurement of biomarkers in the developing larvae. No biological effects of the dumped munitions were found. The same stations in the Stockholm archipelago as in the second project were investigated as a positive control. The results of the three projects agreed well, which demonstrated the continuous pollution of the Baltic Sea and the severe pollution conditions and adverse biological effects in central Stockholm. Further investigations are urgently needed to identify which pollutants or other factors are causing the observed biological effects, both in the background areas in the Baltic Sea and in the Stockholm recipient.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:su-8143
Date January 2008
CreatorsHansson, Tomas
PublisherStockholm University, Department of Applied Environmental Science (ITM), Stockholm : Institutionen för tillämpad miljövetenskap (ITM)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text

Page generated in 0.0028 seconds