Return to search

Gestion de flux de données pour l'observation de systèmes / Data stream management for systems monitoring

La popularisation de la technologie a permis d'implanter des dispositifs et des applications de plus en plus développés à la portée d'utilisateurs non experts. Ces systèmes produisent des flux ainsi que des données persistantes dont les schémas et les dynamiques sont hétérogènes. Cette thèse s'intéresse à pouvoir observer les données de ces systèmes pour aider à les comprendre et à les diagnostiquer. Nous proposons tout d'abord un modèle algébrique Astral capable de traiter sans ambiguïtés sémantiques des données provenant de flux ou relations. Le moteur d'exécution Astronef a été développé sur l'architecture à composants orientés services pour permettre une grande adaptabilité. Il est doté d'un constructeur de requête permettant de choisir un plan d'exécution efficace. Son extension Asteroid permet de s'interfacer avec un SGBD pour gérer des données persistantes de manière intégrée. Nos contributions sont confrontées à la pratique par la mise en œuvre d'un système d'observation du réseau domestique ainsi que par l'étude des performances. Enfin, nous nous sommes intéressés à la mise en place de la personnalisation des résultats dans notre système par l'introduction d'un modèle de préférences top-k. / Due to the popularization of technology, non-expert people can now use more and more advanced devices and applications. Such systems produce data streams as well as persistent data with heterogeneous schemas and dynamics. This thesis is focused on monitoring data coming from those systems to help users to understand and to perform diagnosis on them. We propose an algebraic model Astral able to treat data coming from streams or relations without semantic ambiguity. The engine Astronef has been developed on top of a service-oriented component framework to enable a large adaptability. It embeds a query builder which can select a composition of components to provide an efficient query plan. Its extension Asteroid interfaces with a DBMS in order to manage persistent data in an integrated manner. Our contributions have been confronted to practice with the deployment of a monitoring system for the digital home and with a performance study. Finally, we extend our approach with an operator to personalize the results by introducing a top-k preference model.

Identiferoai:union.ndltd.org:theses.fr/2012GRENM085
Date10 December 2012
CreatorsPetit, Loïc
ContributorsGrenoble, Roncancio, Claudia Lucia, Labbé, Cyril
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds