<p>Research shows that flywheels have a significant potential for improving the performance of EV (Electric Vehicle) drivelines. Flywheels can be used as power buffers that even out the energy flow between the primary energy storage device and the EV traction motor. This improves the potential energy density and extends the lifetime of the primary energy storage device of the EV.</p><p>In this degree project a prototype of a flywheel-buffered driveline was constructed. The flywheel chosen was an electric motor/generator constructed at the Division of Electricity at Uppsala University. Lead acid batteries were used as the primary energy storage device in the driveline and the traction motor was a DC-motor.</p><p>Two DC/DC buck converters were designed for the driveline. The first limited the current from the batteries to the flywheel and the second controlled the power from the flywheel to the traction motor. Both converters were controlled by microcontrollers. The current limiter was controlled by a hysteresis controller and the DC-motor power was regulated manually, under the constraint of a maximum current PI-controller. The buck circuits were simulated in MATLAB Simulink prior to their construction.</p><p>The performance of the driveline was satisfactory, despite the poor efficiency of the DC-motor. The results showed that the efficiency of the flywheel and the power converters was relatively high and that the flywheel had excellent power-buffering properties.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-122509 |
Date | January 2010 |
Creators | Finnstedt, Nils |
Publisher | Uppsala University, Electricity |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Relation | UPTEC ES, 1650-8300 ; 10 013 |
Page generated in 0.0018 seconds