• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 18
  • 7
  • 6
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 96
  • 96
  • 30
  • 28
  • 22
  • 21
  • 19
  • 18
  • 18
  • 17
  • 16
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low Voltage High Current Power Conversion with Integrated Magnetics

Chen, Wei 01 May 1998 (has links)
Very low voltage, high current output requirement have necessitated improvements in power supply's density and efficiency. Existing power conversion techniques cannot meet very stringent size and efficiency requirements. By applying the proposed magnetic integration procedure, new integrated magnetic circuits featuring low loss, simple structure, and ripple cancellation technique are then developed to overcome the limitations of prior art. Both cores and windings are integrated. Consequently, the power loss and the size of the integrated magnetic device are greatly reduced. Detailed analysis and design considerations of the proposed circuits are presented. As a result of applying the proposed technique, very high density, high efficiency, low voltage, high current power modules were developed. A typical example features an isolated 3.3V/30A power module with a power density of 130W/in3 and an efficiency of 90% at 500 KHz switching frequency. / Ph. D.
2

Design and Construction of an EV Driveline Prototype with an Integrated Flywheel

Finnstedt, Nils January 2010 (has links)
<p>Research shows that flywheels have a significant potential for improving the performance of EV (Electric Vehicle) drivelines. Flywheels can be used as power buffers that even out the energy flow between the primary energy storage device and the EV traction motor. This improves the potential energy density and extends the lifetime of the primary energy storage device of the EV.</p><p>In this degree project a prototype of a flywheel-buffered driveline was constructed. The flywheel chosen was an electric motor/generator constructed at the Division of Electricity at Uppsala University. Lead acid batteries were used as the primary energy storage device in the driveline and the traction motor was a DC-motor.</p><p>Two DC/DC buck converters were designed for the driveline. The first limited the current from the batteries to the flywheel and the second controlled the power from the flywheel to the traction motor. Both converters were controlled by microcontrollers. The current limiter was controlled by a hysteresis controller and the DC-motor power was regulated manually, under the constraint of a maximum current PI-controller. The buck circuits were simulated in MATLAB Simulink prior to their construction.</p><p>The performance of the driveline was satisfactory, despite the poor efficiency of the DC-motor. The results showed that the efficiency of the flywheel and the power converters was relatively high and that the flywheel had excellent power-buffering properties.</p>
3

Design and Construction of an EV Driveline Prototype with an Integrated Flywheel

Finnstedt, Nils January 2010 (has links)
Research shows that flywheels have a significant potential for improving the performance of EV (Electric Vehicle) drivelines. Flywheels can be used as power buffers that even out the energy flow between the primary energy storage device and the EV traction motor. This improves the potential energy density and extends the lifetime of the primary energy storage device of the EV. In this degree project a prototype of a flywheel-buffered driveline was constructed. The flywheel chosen was an electric motor/generator constructed at the Division of Electricity at Uppsala University. Lead acid batteries were used as the primary energy storage device in the driveline and the traction motor was a DC-motor. Two DC/DC buck converters were designed for the driveline. The first limited the current from the batteries to the flywheel and the second controlled the power from the flywheel to the traction motor. Both converters were controlled by microcontrollers. The current limiter was controlled by a hysteresis controller and the DC-motor power was regulated manually, under the constraint of a maximum current PI-controller. The buck circuits were simulated in MATLAB Simulink prior to their construction. The performance of the driveline was satisfactory, despite the poor efficiency of the DC-motor. The results showed that the efficiency of the flywheel and the power converters was relatively high and that the flywheel had excellent power-buffering properties.
4

Aircraft electrical power system diagnostics, prognostics and health management

Tai, Zhongtian January 2009 (has links)
In recent years, the loads needing electrical power in military aircraft and civil jet keep increasing, this put huge pressure on the electrical power system (EPS). As EPS becomes more powerful and complex, its reliability and maintenance becomes difficult problems to designers, manufacturers and customers. To improve the mission reliability and reduce life cycle cost, the EPS needs health management. This thesis developed a set of generic health management methods for the EPS, which can monitor system status; diagnose faults/failures in component level correctly and predict impending faults/failures exactly and predict remaining useful life of critical components precisely. The writer compared a few diagnostic and prognostic approaches in detail, and then found suitable ones for EPS. Then the major components and key parameters needed to be monitored are obtained, after function hazard analysis and failure modes effects analysis of EPS. A diagnostic process is applied to EPS using Dynamic Case-based Reasoning approach, whilst hybrid prognostic methods are suggested to the system. After that, Diagnostic, Prognostic and Health Management architecture of EPS is built up in system level based on diagnostic and prognostic process. Finally, qualitative evaluations of DPHM explain given. This research is an extension of group design project (GDP) work, the GDP report is arranged in the Appendix A.
5

Advanced Single-Stage Power Factor Correction Techniques

Qian, Jinrong 14 October 1997 (has links)
Five new single-stage power factor correction (PFC) techniques are developed for single-phase applications. These converters are: Integrated single-stage PFC converters, voltage source charge pump power factor correction (VS-CPPFC) converters, current source CPPFC converters, combined voltage source current source (VSCS) CPPFC converters, and continuous input current (CIC) CPPFC converters. Integrated single-stage PFC converters are first developed, which combine the PFC converter with a DC/DC converter into a single-stage converter. DC bus voltage stress at light load for the single-stage PFC converters are analyzed. DC bus voltage feedback concept is proposed to reduce the DC bus voltage stress at light load. The principle of operations of proposed converters are presented, implemented and evaluated. The experimental results verify the theoretical analysis. VS-CPPFC technique use a capacitor in series with a high frequency voltage source to achieve the PFC function. In this way, the input inductor is eliminated. VS-CPPFC AC/DC converters are developed, and their performance is evaluated. VS-CPPFC electronic ballasts with and without dimming function are also presented. The average lamp current control with duty ratio modulation is developed so that the lamp operates in constant power with a low crest factor over the line variation. The experimental results verify the CPPFC concept. CS-CPPFC technique employs a capacitor in parallel with a high frequency current source to obtain the PFC function. The unity power factor condition and principle of operation are analyzed. By doing so, the switch has less switching current stress, and deals only with the resonant inductor current. Design considerations and experimental results of the CS-CPPFC electronic ballast are presented. VSCS-CPPFC technique integrates the VS-CPPFC with the CS-CPPFC converters. The circuit derivation, unity power factor condition and design considerations are presented. The developed VSCS-CPPFC converters has constant lamp operation, low crest factor with a high power factor even without any feedback control. CIC-CPPFC technique is developed by inserting a small inductor in series with the line rectifier for the conceptual VS-CPPFC, CS-CPPFC and VSCS-CPPFC circuits. The circuit derivation and its unity power factor condition are discussed. The input current can be designed to be continuous, and a small line input filter can be used. The circulating current in the resonant tank and the switching current stress are minimized. The average lamp current control with switching frequency modulation is developed, so the developed electronic ballast operates in constant power, low crest factor. The developed CIC-CPPFC electronic ballast has features of low line input current harmonics, constant lamp power, low crest factor, continuous input current, low DC bus voltage stress, small circulating current and switching current stress over a wide range of line input voltage. / Ph. D.
6

Single Phase Power Factor Correction Circuit with Wide Output Voltage Range

Zhao, Yiqing 12 February 1998 (has links)
The conventional power factor correction circuit has a fixed output voltage. However, in some applications, a PFC circuit with a wide output voltage range is needed. A single phase power factor correction circuit with wide output voltage range is developed in this work. After a comparison of two main power stage candidates (Buck+Boost and Sepic) in terms of efficiency, complexity, cost and device rating, the buck+boost converter is employed as the variable output PFC power stage. From the loss analysis, this topology has a high efficiency from light load to heavy load. The control system of the variable output PFC circuit is analyzed and designed. Charge average current sensing scheme has been adopted to sense the input current. The problem of high input harmonic currents at low output voltage is discussed. It is found that the current loop gain and cross over frequency will change greatly when the output voltage changes. To solve this problem, an automatic gain control scheme is proposed and a detailed circuit is designed and added to the current loop. A modified input current sensing scheme is presented to overcome the problem of an insufficient phase margin of the PFC circuit near the maximum output voltage. The charge average current sensing circuit will be bypassed automatically by a logical circuit when the output voltage is higher than the peak line voltage. Instead, a resistor is used to sense the input current at that condition. Therefore, the phase delay caused by the charge average current sensing circuit is avoided. The design and analysis are based on a novel air conditioner motor system application. Some detailed design issues are discussed. The experimental results show that the variable output PFC circuit has good performance in the wide output voltage range, under both the Boost mode when the output voltage is high and the Buck+Boost mode when the output voltage is low. / Master of Science
7

Multi-port DC-DC Power Converter for Renewable Energy Application

Chou, Hung-Ming 16 January 2010 (has links)
In recent years, there has been lots of emphasis put on the development of renewable energy. While considerable improvement on renewable energy has been made, there are some inherent limitations for these renewable energies. For example, for solar and wind power, there is an intermittent nature. For the fuel cell, the dynamics of electro-chemical reaction is quite slow compared to the electric load. This will not be acceptable for modern electric application, which requires constant voltage of constant frequency. This work proposed and evaluated a new power circuit that can deal with the problem of the intermittent nature and slow response of the renewable energy. The proposed circuit integrates different renewable energy sources as well as energy storage. By integrating renewable energy sources with statistical tendency to compensate each other, the effect of the intermittent nature can be greatly reduced. This integration will increase the reliability and utilization of the overall system. Moreover, the integration of energy storage solves the problem of the slow response of renewable energy. It can provide the extra energy required by load or absorb the excessive energy provided by the energy sources, greatly improving the dynamics of overall system. To better understand the proposed circuit, "Dual Active Bridge" and "Triple Active Bridge" were reviewed first. The operation principles and the modeling were presented. Analysis and design of the overall system were discussed. Controller design and stability issues were investigated. Furthermore, the function of the central controller was explained. In the end, different simulations were made and discussed. Results from the simulations showed that the proposed multi-port DC-DC power converter had satisfactory performance under different scenarios encountered in practical renewable energy application. The proposed circuit is an effective solution to the problem due to the intermittent nature and slow response of the renewable energy.
8

Modulation and Control of Matrix Converter for Aerospace Application

Kobravi, Keyhan 17 December 2012 (has links)
In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical nstruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix Converter technology for ac to ac power conversion regarding the existing technologies of Matrix Converters.
9

Modulation and Control of Matrix Converter for Aerospace Application

Kobravi, Keyhan 17 December 2012 (has links)
In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical nstruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix Converter technology for ac to ac power conversion regarding the existing technologies of Matrix Converters.
10

Variable-Speed Switched Reluctance Motor Drives for Low-Cost, High-Volume Applications

Kim, Jaehyuck 29 March 2010 (has links)
Demand for energy-saving variable speed drives in low-cost, high-volume appliances has increased due to energy and environmental concerns and hence the need to comply with new regulations. Switched reluctance motor (SRMs) have been considered by many as attractive alternatives for brush commutated motors or permanent magnet brushless dc motors (PMBDCMs) in such cost-sensitive applications. The SRMs' unique features such as simple and fault-tolerant structure and unidirectional flow of their phase currents endow them with the possibility of various configurations on both machine and converter topologies for different applications. In the present study, three different variable-speed motor drive systems are proposed, studied, and implemented for their deployment in low-cost, high-volume applications with the power rating of 1.5kW or less. Two different two-phase SRMs and three different power converters are employed to realize three different low-cost drive systems. The first drive system is realized using a novel converter requiring only a single-controllable switch and an asymmetric two-phase 8/4 SRM capable of self-starting and four-quadrant operation. The second drive system is realized using another novel converter requiring two controllable switches, that way to achieve better control and utilization of the asymmetric 8/4 motor. The target applications for both drive systems are low power, low performance drives such as fans, hand tools, small appliances, etc. The third system is realized using a high-speed two-phase 4/2 SRM and a split ac source converter, which is designed for high-speed applications such as vacuum cleaners, ultracentrifuges, etc. The control and design aspects for each drive system are studied. Selection of optimal firing angles and optimal number of winding turns are also investigated. All of the drive systems are first demonstrated on the position sensor-based speed-control scheme. To make the drive system even more cost-competitive, operation without the position sensor using the novel parameter insensitive sensorless control scheme is proposed and implemented. Concept, analysis, simulation, and experimental verification of the proposed sensorless scheme are discussed in detail. / Ph. D.

Page generated in 0.0713 seconds