• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 18
  • 8
  • 6
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 97
  • 97
  • 31
  • 29
  • 22
  • 21
  • 19
  • 18
  • 18
  • 17
  • 16
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Semiconductor Materials and Devices for High Efficiency Broadband and Monochromatic Photovoltaic Energy Conversion

Beattie, Meghan 27 July 2021 (has links)
This thesis addresses barriers to the widespread adoption of high-efficiency photovoltaic devices through the use of innovative semiconductor materials and device design. The feasibility of various strategies is explored through experimental characterization and modeling of semiconductor materials and devices. High-efficiency photovoltaic devices are made from epitaxially grown III-V semiconductor materials. Epitaxial devices are highly sensitive to lattice mismatch between the epi-layers and the substrate, requiring sophisticated substrate engineering or growth strategies to access materials outside of the lattice-matched regime. One promising strategy involves the electrochemical porosification of germanium on a lattice-mismatched silicon substrate to create a compliant interface for high-quality epitaxial growth of Ge, GaAs, and other equivalent-bandgap III-V semiconductors on silicon. This results in a threading dislocation density of ~10^4 cm^-2, a reduction of 4 to 6 orders of magnitude compared to direct epitaxy of germanium on silicon. This technology could enable the development of highly efficient III-V multi-junction photovoltaic devices on cost-effective silicon substrates that benefit from well-established commercial supply chains. In the first part, I present characterization of the electrical properties of porous germanium. Experimental measurements revealed conductivities ranging from 0.6 to 33 (x10^-3) Ohm^-1 cm^-1, depending on the morphology. The relationship between the electrical properties and the morphology is described using an electrostatic model that can be generalized to other porous semiconductors including silicon. For a compliant interface designed to integrate a standard triple-junction solar cell onto a silicon substrate, the porous Ge/Si layers are predicted to introduce < 0.01 Ohm cm^2 of series resistance to the device, which is sufficiently low for concentrated photovoltaic applications. Optoelectronic device modelling of the triple-junction solar cell on silicon demonstrates that III-V triple-junction solar cells fabricated on silicon using this compliant Ge/Si porous interface could achieve 93% of the efficiency of a comparable defect-free device. The remainder of this thesis is concerned with the design and characterization of photovoltaic devices optimized for monochromatic illumination, known as photonic power converters. Most commercially available photonic power converters are based on GaAs and are suitable for short-range photonic power transmission through optical fiber (< 1 km). Extended reach power-over-fiber systems require the use of photonic power converters that are compatible with longer-wavelength light, which travels further in optical fiber. One candidate material for this application is the semiconductor quaternary alloy InAlGaAs lattice-matched to InP for photonic power converter operation in the telecommunications O-band, near 1310 nm. I describe the design and characterization of multi-junction InAlGaAs/InP photonic power converters grown by molecular beam epitaxy, including the analysis of material properties and characterization of single- and dual-junction devices under 1319-nm laser illumination. Optically thick devices are found to be diffusion-limited and device simulations suggest that non-radiative recombination is significant. The performance of InAlGaAs tunnel diodes, which act as interconnections for the absorbing junctions within a multi-junction device, is demonstrated to be highly dependent on the growth temperature, with peak tunneling current densities exceeding 1200 A/cm^2 in the best measured devices. In addition to molecular beam epitaxy-grown InAlGaAs/InP devices, I also characterize single-junction O-band photonic power converters grown by metal-organic vapour phase epitaxy with two alternative absorber materials. A lattice-matched InGaAsP/InP device is compared to a more cost-effective lattice-mismatched GaInAs device grown on GaAs using a metamorphic buffer layer. Both devices are measured under 1319-nm laser illumination with a variety of beam sizes and peak efficiencies of 52.9% and 48.8% were measured for the InGaAsP/InP and the metamorphic-GaInAs/GaAs devices respectively. At illumination powers exceeding 100 mW, the performance begins to degrade with increasingly non-uniform illumination, indicating that illumination profiles should be as uniform as possible to maximize device performance.
32

Modeling And Digital Control Of High Frequency Dc-dc Power Converters

Wen, Yangyang 01 January 2007 (has links)
The power requirements for leading edge digital integrated circuits have become increasingly demanding. Power converter systems must be faster, more flexible, more precisely controllable and easily monitored. Meanwhile, in addition to control process, the new functions such as power sequencing, communication with other systems, voltage dynamic programming,load line specifications, phase current balance, protection, power status monitoring and system diagnosis are going into today's power supply systems. Digital controllers, compared withanalog controllers, are in a favorable position to provide basic feedback control as well as those power management functions with lower cost and great flexibility. The dissertation gives an overview of digital controlled power supply systems bycomparing with conventional analog controlled power systems in term of system architecture,modeling methods, and design approaches. In addition, digital power management, as one of the most valuable and "cheap" function, is introduced in Chapter 2. Based on a leading-edge digital controller product, Chapter 3 focuses on digital PID compensator design methodologies, design issues, and optimization and development of digital controlled single-phase point-of-load (POL)dc-dc converter. Nonlinear control is another valuable advantage of digital controllers over analogcontrollers. Based on the modeling of an isolated half-bridge dc-dc converter, a nonlinear control method is proposed in Chapter 4. Nonlinear adaptive PID compensation scheme is implemented based on digital controller Si8250. The variable PID coefficient during transients improves power system's transient response and thus output capacitance can be reduced to save cost. In Chapter 5, another nonlinear compensation algorithm is proposed for asymmetric flybackforward half bridge dc-dc converter to reduce the system loop gain's dependence on the input voltage, and improve the system's dynamic response at high input line. In Chapter 6, a unified pulse width modulation (PWM) scheme is proposed to extend the duty-cycle-shift (DCS) control, where PWM pattern is adaptively generated according to the input voltage level, such that the power converter's voltage stress are reduced and efficiency is improved. With the great flexibility of digital PWM modulation offered by the digital controller Si8250, the proposed control scheme is implemented and verified. Conclusion of the dissertation work and suggestions for future work in related directions are given in final Chapter.
33

Ac-dc Bus-interface Bi-directional Converters in Renewable Energy Systems

Dong, Dong 06 August 2012 (has links)
This dissertation covers several issues related to the ac-dc bus-interface bi-directional converters in renewable energy systems. The dissertation explores a dc-electronic distribution system for residential and commercial applications with a focus on the design of an ac-dc bi-directional converter for such application. This converter is named as the "Energy Control Center" due to its unique role in the system. First, the impact of the unbalanced power from the ac grid, especially the single-phase grid, on the dc system operation is analyzed. Then, a simple ac-dc two-stage topology and an advanced digital control system is proposed with a detailed design procedure. The proposed converter system significantly reduces the dc-link capacitor volume and achieves a dynamics-decoupling operation between the interfaced systems. The total volume of the two-stage topology can be reduced by upto three times compared with the typical design of a full-bridge converter. In addition, film capacitors can be used instead of electrolytic capacitors in the system, and thus the whole system reliability is improved. A set of ac passive plus active filter solutions is proposed for the ac-dc bus-interface converter which significantly reduces the total power filter volume but still eliminate the total leakage current and the common-mode conducted EMI noises by more than 90%. The dc-side low-frequency CM voltage ripple generated by the unbalanced ac voltages can be eliminated as well. The proposed solution features a high reliability and fits three types of the prevalent low-voltage ac distribution systems. Grid synchronization, a critical interface control in ac-dc bus-interface converters, is discussed in detail. First, a novel single-phase grid synchronization solution is proposed to achieve the rejection of multiple noises as well as the capability to track the ac voltage amplitude. Then, a comprehensive modeling methodology of the grid synchronization for three-phase system is proposed to explain the output frequency behaviors of grid-interface power converters at the weak grid, at the islanded condition, and at the multi-converter condition. The proposed models provide a strong tool to predict the grid synchronization instabilities raised from industries under many operating conditions, which is critical in future more-distributed-generation power systems. Islanding detection issues in ac-dc bus-interface converters are discussed in detail. More than five frequency-based islanding detection algorithms are proposed. These solutions achieve different performances and are suitable for different applications, which are advantageous over existing solutions. More importantly, the detailed modeling, trade-off analysis, and design procedures are given to help completely understand the principles. In the end, the effectiveness of the proposed solutions in a multiple-converter system are analyzed. The results drawn from the discussion can help engineers to evaluate other existing solutions as well. / Ph. D.
34

Power Converter and Control Design for High-Efficiency Electrolyte-Free Microinverters

Gu, Bin 30 January 2014 (has links)
Microinverter has become a new trend for photovoltaic (PV) grid-tie systems due to its advantages which include greater energy harvest, simplified system installation, enhanced safety, and flexible expansion. Since an individual microinverter system is typically attached to the back of a PV module, it is desirable that it has a long lifespan that can match PV modules, which routinely warrant 25 years of operation. In order to increase the life expectancy and improve the long-term reliability, electrolytic capacitors must be avoided in microinverters because they have been identified as an unreliable component. One solution to avoid electrolytic capacitors in microinverters is using a two-stage architecture, where the high voltage direct current (DC) bus can work as a double line ripple buffer. For two-stage electrolyte-free microinverters, a high boost ratio dc-dc converter is required to increase the low PV module voltage to a high DC bus voltage required to run the inverter at the second stage. New high boost ratio dc-dc converter topologies using the hybrid transformer concept are presented in this dissertation. The proposed converters have improved magnetic and device utilization. Combine these features with the converter's reduced switching losses which results in a low cost, simple structure system with high efficiency. Using the California Energy Commission (CEC) efficiency standards a 250 W prototype was tested achieving an overall system efficiency of 97.3%. The power inversion stage of electrolyte-free microinverters requires a high efficiency grid-tie inverter. A transformerless inverter topology with low electro-magnetic interference (EMI) and leakage current is presented. It has the ability to use modern superjunction MOSFETs in conjunction with zero-reverse-recovery silicon carbide (SiC) diodes to achieve ultrahigh efficiency. The performance of the topology was experimentally verified with a tested CEC efficiency of 98.6%. Due to the relatively low energy density of film capacitors compared to electrolytic counterparts, less capacitance is used on the DC bus in order to lower the cost and reduce the volume of electrolyte-free microinverters. The reduced capacitance leads to high double line ripple voltage oscillation on DC bus. If the double line oscillation propagates back into the PV module, the maximum power point tracking (MPPT) performance would be compromised. A control method which prevents the double line oscillation from going to the PV modules, thus improving the MPPT performance was proposed. Finally, a control technique using a single microcontroller with low sampling frequency was presented to effectively eliminate electrolyte capacitors in two-stage microinverters without any added penalties. The effectiveness of this control technique was validated both by simulation and experimental results. / Ph. D.
35

Design and control methods to enhance the efficiency of two-port and three-port DC-DC resonant converters in electric vehicle applications

Abeysinghe Mudiyanselage, Guvanthi January 2024 (has links)
DC-DC resonant converters benefit from soft switching and reduced peak currents over other topologies. However, the design and control of resonant converters are challenging due to non-linearities in the resonant tanks. This research focuses on design and control methods for two-port and three-port resonant converters in EV applications. The two-port LLC resonant converter is attractive for on-board charger applications. However, if not appropriately designed, the frequency-modulated LLC converters will have a wide range of switching frequencies and lose efficiency in wide voltage range OBC applications. Hence, practicing proper converter design and control methods is essential to maximize efficiency. This work proposes a design framework for a wide-voltage range LLC converter to enhance efficiency. Topology morphing is used to reduce the effective voltage gain, and an online topology morphing method, along with a cascaded closed-loop control system, is also proposed. Three-port DC-DC converters can facilitate power transfer among three sources/ sinks. With the emerging trend of dual auxiliary voltages in EVs, the three-port resonant converter topology is an ideal candidate to interface the high voltage battery with low to medium voltages. This work proposes an optimal control method for a TPRC based on duty-ratio and phase-shift control to maximize its efficiency. The control method is optimized using a novel harmonic approximation-based model. A 300 – 700 V input, 250 – 450 V output, 3.3 kW LLC converter is designed and tested to validate the proposed design and control methods of the LLC converter. The time-weighted averaged efficiency above 96.7% is observed over the entire input voltage range. A 400 – 800 V/ 46 – 50 V/ 10 – 14 V, 6kW rated power TPRC is also designed and tested to validate the proposed optimal control method. Peak efficiency of 96.34% is observed, with a maximum efficiency improvement of 12.4% compared to the conventional phase-shift control. / Dissertation / Doctor of Science (PhD) / DC-DC converters are used in numerous electrical applications to transfer power between an energy source and a load while stepping up or down the voltage levels to match their specifications. During the power transfer, losses occur within the DCDC converter from the switching devices and the other converter elements. For high energy efficiency, these converters must have minimal losses. Among the different DC-DC converters, resonant converters are attractive due to their reduced power losses. As the automotive industry rapidly moves towards electrification, DC-DC resonant converters can provide efficient power transfer in electric vehicle (EV) applications. However, the design and control of resonant converters are challenging compared to other DC-DC converters. Therefore, practicing proper design and control methods in DC-DC resonant converters is essential. This thesis proposes optimal design and control methods for DC-DC converters in EV applications to enhance efficiency. The proposed methods are validated using hardware prototypes.
36

Modeling, Analysis and Design of Renewable Energy Nanogrid Systems

Cvetkovic, Igor 17 September 2010 (has links)
The thesis addresses electronic power distribution systems for the residential applications. Presented are both, renewable energy ac-nanogrid system along with the vehicle-to-grid technology implementation, and envisioned structure and operation of dc-nanogrid addressing all system components chosen as an inherent part of the future electrical architecture. The large-scale model is built and tested in the laboratory environment covering a few operational modes of the ac-nanogrid, while later in the thesis is shown how dc bus signaling technique could be contemplated for the energy management of the renewable energy sources and their maximal utilization. Thesis however puts more focus on the dc-nanogrid system to explore its benefits and advantages for the electrical systems of the future homes that can easily impact not only residential, but also microgrid, grid and intergrid levels. Thus, presented is low frequency terminal behavioral modeling of the system components in dc-nanogrid motivated by the fact that system engineers working on the system-level design rarely have access to all the information required to model converters and system components, other than specification and data given in the datasheets. Using terminal behavioral modeling, converters are measured on-line and their low frequency dynamics is identified by the means of the four transfer functions characteristically used in two port network models. This approach could significantly improve system-level design and simulations. In addition to previously mentioned, thesis addresses terminal behavioral modeling of dc-dc converters with non-linear static behavior showing hybrid behavioral models based on the Hammerstein approach. / Master of Science
37

DC To DC Converter Topologies For High Voltage Power Supplies Under Pulsed Loading

Vishwanathan, Neti 02 1900 (has links) (PDF)
No description available.
38

Enhanced instantaneous power theory for control of grid connected voltage sourced converters under unbalanced conditions

Alves Montanari, Allan January 1900 (has links)
This thesis introduces a new method especially designed to control the instantaneous power in voltage sourced converters operating under unbalanced conditions, including positive, negative and zero sequence content. A transformation technique, labelled mno transformation, was developed to enable the decomposition of the total instantaneous power flowing on three-phase transmission topologies into constant and oscillating terms. It is applied to three-wire and four-wire schemes, especially accommodating zero sequence unlike previous approaches. Classical and modern electric power theories are presented, particularly focusing on their definitions for adverse AC scenarios. The main mathematical transformations conceived to analyze such situations are summarized, showing their respective advantages and disadvantages. An enhanced instantaneous power theory is introduced. The novel proposed power equations, named mno instantaneous power components, expands the application of the p-q theory, which is attached to the αβ0 transformation. The mno instantaneous power theory is applied to develop an innovative power control method for grid connected voltage sourced converters in order to minimize power oscillations during adverse AC scenarios, particularly with zero sequence content. The method permits to sustain constant instantaneous three-phase power during unbalanced conditions by controlling independently the constant and the oscillating terms related to the instantaneous power. The effectiveness of the proposed control approach and the proposed power conditioning scheme was demonstrated using electromagnetic transient simulation of a VSC connected to an AC system. / May 2017
39

Modeling, Real-time Simulation And Design Of Matrix Converters

Gopinath, Dinesh 09 1900 (has links)
Power converters have evolved from the classical low switching frequency thyristorised converters to the modern high-frequency switched mode converters employing fast power devices such as Insulated Gate Bipolar Transistors (IGBTs). This evolution has changed the way power is processed in all the four functional areas of power conversion namely, AC-DC, DC-DC, DC-AC and AC-AC. High frequency switching has made it possible to reduce the size of the converters by using smaller energy storage elements. Switched mode conversion applied to AC-AC power conversion results in the use of two approaches: An indirect (two stage) conversion with a rectifier and an inverter with a dc link storage and a direct conversion scheme with a matrix converter. Matrix converter is a potential candidate in certain applications where a compact power converter design is required. Two approaches in topology, namely direct and indirect matrix converters are well reported in the literature. This thesis looks at the analysis, modeling and control of matrix converters from the perspective of converter switching functions. The switching functions as proposed for the line frequency switching rectifiers and cycloconverters is extended to the high frequency switching pulse-width modulated inverters and rectifiers. The matrix converter modulation schemes are analysed and a fresh interpretation in terms of these switching functions is presented in this thesis. The application of the switching function based analysis also yields a better insight into popular space phasor moulation techniques employed in matrix converters such as indirect-space-phasor modulation. The topology of the matrix converter is simple. There are no energy storage elements. However, the control, modulation and protection processes are more complex than other converters. The complexities involved in the control, modulation, commutation and protection of the matrix converter necessitates a much more complex controller capable of carrying out these tasks fast and effectively. In this work, a versatile FPGA based digital controller is designed which is not only capable of carrying out all the modulation, control, commutation and protection requirements of the matrix converter but also, can simulate the converter and the load in real-time. The real-time simulation capabilities of the control and real-time simulation platform are demonstrated with a suitable example of dynamic system. The real-time models of the matrix converter feeding passive load are developed and demonstrated in comparison with offline simulation models. Matrix converters are buck-derived converters and hence the input currents are discontinuous. Hence design of an appropriate filter becomes necessary. Some guidelines are suggested to design an appropriate input filter considering the non-idealities of the source. Finally, hardware designs of suitably rated direct and indirect matrix converters are presented and some representative results are given.
40

System Perspectives on Hydro-Kinetic Energy Conversion

Yuen, Katarina January 2012 (has links)
Free-flowing water currents such as tides and unregulated water courses could contribute to world electricity production given the emergence of robust technical solutions for extracting the energy. At Uppsala University, a concept for converting the energy in water currents to electricity using a vertical axis turbine with fixed blade-pitch and a direct-drive permanent magnet generator is studied. Technological equipment for extracting energy from water currents can be studied at desktop to some extent, but physical realizations, first in a laboratory setting, and later in a natural aquatic setting, are necessary. For this reason, a laboratory generator has been constructed and evaluated, and an experimental setup comprising turbine, generator and control system has been constructed. The turbine and generator are to be deployed in the Dalälven River in Söderfors, and operated from an on-land control station. The author has worked with constructing and evaluating the low-speed laboratory generator, participated in the design and construction of the Söderfors generator, and designed and constructed the control system for Söderfors. The generator design incorporates a low rotational speed, permanent magnets, and many poles, in order to adapt the generator to the nature of water currents. Simulations and experimental data for the laboratory prototype have been compared and show that the simulation tool used is adequate for design studies of this type of generator. The generator has also been shown to be able to operate with the intended turbine design and range of water velocities. The control system to be used in Söderfors has been tested in a laboratory environment. Simulations of the control system show that it should be able to operate the turbine and generator at the desired rotational speeds in water velocities up to about 1.8 m/s. Simulations of the system have also shown that maximizing system power output may not correspond with maximizing turbine power.

Page generated in 0.0588 seconds