Dans cette thèse, nous étudions l’influence d’un plasma non-stationnaire produit par des impulsions laser en régime d’auto-focalisation. Cette auto-focalisation est couplée à des non-linéarités Brillouin pour des impulsions nanosecondes dans les verres de silice. Elle excite différents canaux d’ionisation dans les cristaux de KDP irradiées par des impulsions femtosecondes. Tout d’abord, nous dérivons les équations de propagation des ondes optiques laser et Stokes sujettes à la filamentation due à l’effet Kerr, la rétrodiffusion Brillouin et à la génération de plasma. Dans une deuxième partie, nous présentons des résultats numériques sur la propagation non-linéaire de faisceaux LIL. Ceux-ci révèlent l’importance de la distribution temporelle de l’impulsion pompe dans la compétition entre auto-compression Kerr et la rétrodiffusion Brillouin stimulée. Ces simulations préliminaires permettent de valider le système anti-Brillouin opté pour le LMJ sur la base de faisceaux millimétriques.Dans une troisième partie, nous présentons des résultats théoriques et numériques sur la filamentation d’impulsions nanosecondes opérant dans l’ultraviolet et l’infrarouge. L’influence d’un plasma inertiel sur la dynamique de couplage de deux ondes en contre-propagation est examinée. Dans une configuration à une onde, une analyse variationnelle reproduit les caractéristiques globales d’un équilibre quasi-stationnaire entre auto-compression Kerr et défocalisation plasma. Toutefois, cet équilibre cesse pour faire place à des instabilités modulationnelles induites par rétroaction du plasma sur l’onde de pompe. Nous montrons que des modulations de phase supprimant la rétrodiffusion Brillouin permettent d’inhiber ces instabilités plasma. La robustesse de ces modulations de phase est testée en présence d’un bruit aléatoire dans le profil de l’impulsion laser.Enfin, nous étudions numériquement la dynamique non-linéaire d’impulsions femtosecondes se propageant dans la silice et le KDP. Premièrement, nous montrons que la présence de défauts impliquant moins de photons pour exciter un électron de la bande de valence à la bande de conduction promeut des intensités de filamentation plus élevées. Ensuite, nous comparons la dynamique de filamentation dans la silice avec celle dans un cristal KDP. Le modèle d’ionisation pour le KDP prend en compte la présence de défauts et la dynamique électrons-trous. Nous montrons que la dynamique de propagation dans la silice et le KDP présente des analogies remarquables pour des rapports de puissance incidente sur puissance critique équivalents.La conclusion nous permet de résumer les résultats originaux obtenus dans le cadre de cette thèse et d’en discuter des développements ultérieurs possibles. / In this thesis, we study the role of an inertial plasma reponse produced by laser pulses in self-focusing regime. Self-focusing is coupled with Brillouin nonlinearities for nanosecond pulses in silica glasses. For femtosecond pulses propagating in KDP crystals, self-focusing excites various ionization chanels. First of all, we derive the propagation equations for the pump and Stokes waves, subjected to filamentation due to optical Kerr effect, stimulated Brillouin scattering and plasma generation. In the second part, we present numerical results on the nonlinear propagation of LIL laser beams. These results show that temporal distribution of the pump pulse play a key role in the competition between self-focusing and stimulated Brillouin scattering. These preliminary results valide the anti-Brillouin system opted on the MegaJoule laser (LMJ) on the basis of milimetric-size laser beam.In a third part, we present numerical and theoretical results on the filamentation in fused silica of nanosecond light pulses operating in ultraviolet and infrared range. Emphasis is put on the action of a dynamical plasma reponse on two counterpropagating waves. For a single wave, we develop a variational analysis which reproduces global propagation features for a quasistationary balance between self-focusing and plasma defocusing. However, such a quasistionary balance ceases to clean up modulational instabilites induced by plasma retroaction on the pump wave. We show that phase modulations supress both simulated Brillouin scattering and plasma instabilities. The robustness of phase modulations is evaluated in presence of random fluctuations in the input pump pulse profile.Finally, we study numerically the nonlinear propagation of femtosecond pulses in fused silica and KDP. First, we show that the presence of defects involving less photons for exciting electrons from the valence band to the conduction band promotes higher filamentation intensity levels. Then, we compare the filamentation dynamic in silica and KDP crystal. The ionization model for KDP crystal takes into account the presence of defects and the electron-hole dynamics. We show that the propagation dynamics in silica and KDP are almost identical at equivalent ratios of input power over the critical power self-focusing.The summary of this thesis recalls the original results obtained and discusses the possibility of future developments.
Identifer | oai:union.ndltd.org:theses.fr/2014PA112195 |
Date | 26 September 2014 |
Creators | Rolle, Jérémie |
Contributors | Paris 11, Bergé, Luc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds