• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 29
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 77
  • 35
  • 29
  • 23
  • 21
  • 16
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Single-shot visualization of evolving, light-speed refractive index structures

Li, Zhengyan 24 June 2014 (has links)
An intense laser or charged particle pulse propagating through matter excites light-speed refractive index structures in its wake via Kerr effect, ionization, or displacement of electrons from background ions. Examples include plasma wakes used to accelerate charged particles and self-guided filaments used for atmospheric analysis and micromachining. Such applications constrain the shape, size and evolution of the index structure, yet often these are known in detail only through intensive computer simulations based on estimated initial conditions. Here we develop and demonstrate three methods for visualizing evolving light-speed structures directly in the laboratory in a single shot : (1) frequency-domain streak camera, (2) frequency-domain tomography, and (3) multi-object-plane phase-contrast imaging. All three methods are based on analyzing phase perturbations that an evolving object imprints on one or more probe laser pulses that cross its path obliquely. The methods are tailored to different propagation lengths, material densities, and dimensionality of imaging. Using these techniques, evolving laser-driven filaments in glass and air and plasma wakes in helium gas driven by laser pulses up to petawatt peak power are visualized in one shot, revealing underlying nonlinear laser-plasma interaction physics that is compared in detail to computer simulations. / text
2

Gain Dynamics of the N2+ Air Laser

Laferriere, Patrick 24 August 2018 (has links)
Lasing from femtosecond laser filaments is a relatively new field of study that has been studied since its first observation in 2003. Such lasing effect is of interest to the scientific community due to its possible application in remote sensing. This thesis studies the lasing dynamics of the excited molecular nitrogen ion N2+ which emits primarily at 391 nm and 428 nm wavelengths. We start by studying the ellipticity dependence of the gain from filaments in ambient air. We then study the ellipticity dependence in a vacuum in a supersonic gas jet to remove the complexity of filamentation. We show that recollision doesn't play a significant role in creating a population inversion by comparing the ellipticity dependence of the gain and high harmonic generation. The rest of this thesis is devoted to shining some light on another possible mechanism. We characterize the gain by its temporal profile, jet position dependence, and density dependence.
3

Behaviour of cold-adapted Listeria monocytogenes under conditions representative of meat processing plants

Vail, Kathleen M Unknown Date
No description available.
4

Evaluation of the radiosensitizing or radioprotective/antioxidant potential of some selected compounds by polyacrylamide gel dosimetry and Fricke dosimeter, and utilization of the femtosecond infrared laser pulse filamentation as a novel, powerful beam for cancer radiotherapy / Évaluation du potentiel radiosensibilisateur ou radioprotecteur/antioxydant de quelques composés sélectionnés par dosimétrie par gel de polyacrylamide et dosimètre de Fricke, et utilisation de la filamentation par impulsion laser infrarouge femtoseconde comme un nouveau et puissant faisceau pour la radiothérapie du cancer

Meesat, Ridthee January 2012 (has links)
In radiation treatment, a sufficiently high radiation dose must be delivered to the tissue volumes containing the tumor cells while the lowest possible dose should be deposited in surrounding healthy tissue. We developed an original approach that is fast and easy to implement for the early assessment of the efficiency of radiation sensitizers and protectors. In addition, we characterized a new femtosecond laser pulse irradiation technique. We are able to deposit a considerable dose with a very high dose rate inside a well-controlled macroscopic volume without deposition of energy in front or behind the target volume. The radioprotective efficiency was measured by irradiation of the Fricke solution incorporating a compound under study and measuring the corresponding production of ferric ions G (Fe3+ ). The production of ferric ions is most sensitive to the radical species produced in the radiolysis of water. We studied experimentally and simulated with a full Monte-Carlo computer code the radiation-induced chemistry of Fricke/cystamine solutions. Results clearly indicate that the protective effect of cystamine originates from its radical-capturing ability, which allows this compound to compete with the ferrous ions for the various fre radicals - especially · OH radicals and H· atoms - formed during irradiation of the surrounding water. The sensitizing capacity of radiation sensitizers was measured by irradiation of a polyacrylamide gel (PAG) dosimeter incorporating a compound under study and measuring the corresponding increase in the gradient between spin-spin relaxation rate (R2 ) and absorbed dose. We measured an irradiation energy-dependent increase in R 2 -dose sensitivity for halogenated compounds or a decrease for radioprotectors. Finally, we studied a novel laser irradiation method called "filamentation". We showed that this phenomenon results in an unprecedented deposition of energy and the dose rate thus achieved exceeds by orders of magnitude values previously reported for the most intense clinical radiotherapy systems. Moreover, the length of the dose-fre entrance region was adjusted by selecting the duration of femtosecond laser pulses. In addition, we provided evidence that the biological damage caused by this irradiation was similar to other ionizing radiation sources. [symboles non conformes]
5

SPATIAL CHARACTERIZATION OF LASER FILAMENTS BY DETECTION OF SIGNATURES OF IONIZATION

Fisher, Reginald January 2018 (has links)
Laser filamentation is a phenomenon currently being widely studied in which an ultrashort laser pulse self focuses as a result of the nonliner Kerr effect. Lim- ited data is available in terms of spatial characterization of the filament. We study the spatial distribution of molecular and atomic species generated by the filament in order to infer the relevant dynamics. We find evidence for a new impulsive vibrational excitation scheme which we introduce in this dissertation. Insight into the mechanisms of ionization is gained by consideration of the details of this process. In addition, the suitability of filaments to stimulate impulsive Raman scattering for spectroscopic purposes is evaluated. The data presented show the first measurements of ions by impulsive Raman spectroscopy. This method has advantages over previous techniques. Signal is directional and so it can be more completely collected and can be measured stand off. The energy required for detection is also provided by a probe beam rather than from the analyte molecules themselves and so there is no limit to its intensity as in the case of fluorescence spectroscopy. / Physics
6

Sur l'étude du processus de filamentation laser dans les gaz rares en modèle de champ fort : des influences de la génération de troisième harmonique et de la proximité de résonances dans l'ultraviolet / On the study of the laser filamentation process in rare gases under the strong field model : impacts of third harmonic generation and of the vicinity of resonances in the ultraviolet

Doussot, Julien 19 December 2017 (has links)
Le processus de filamentation découle de la balance dynamique de plusieurs effets linéaires et non-linéaires, permettant l'auto-stabilisation du faisceau laser sur des distances de propagation significativement supérieures à celles prédites par la théorie des faisceaux gaussiens. Cette thèse s'attache à décrire ce phénomène dans les gaz rares en modèle dit de champ fort, par opposition au modèle usuel, utilisé dans le cadre de la théorie des perturbations et s'appuyant sur l'approximation du champ faible. L'influence des harmoniques, jusqu'ici négligée, est alors revisitée tant au niveau microscopique qu'à l'échelle d'une propagation. Il est montré, expérimentalement et par l'appui de simulations numériques, qu'il suffit d'une faible proportion de troisième harmonique pour que la dynamique de la filamentation soit fortement impactée, notamment à travers le processus d'ionisation. Egalement, la proximité d'une résonance peut mener à de fortes modifications du mécanisme d'auto-guidage: lorsqu'un champ fondamental centré à 400nm et sa troisième harmonique interagissent avec du krypton, il est montré que le processus de modulation de phase croisée est renforcé et qu'il peut alors endosser un rôle défocalisant de manière non-négligeable. Une autre situation - à 300nm dans le krypton - amène à un renforcement résonant de la filamentation, se traduisant par l'allongement de la longueur du filament par rapport au cas hors-résonance. / Filamentation originates from the dynamic balance between linear and nonlinear effects, allowing the laser beam autostabilization over distances significantly greater than those predicted by linear optics laws. The aim of this thesis is to describe this phenomenon on rare gases under the strong field model, contrary to the commonly used perturbation model based on the weak field approximation. The influence of harmonics, so far neglected, is then revisited both at the microscopic level and at a propagation scale. It is shown, experimentally and with the support of numerical simulations, that a weak proportion of third harmonic is sufficient to strongly impact the filamentation dynamics, especially through the ionization process. Also, the vicinity of a resonance can lead to strong modifications of the self-guiding mechanism: when a fundamental field centered at 400nm and its third harmonic interact together with krypton, it is shown that the cross-phase modulation process is enhanced and can participate to the beam defocusing. Another situation - at 300nm in krypton - leads to resonantly enhanced filamentation, i.e. to longer filaments compared to the non-resonant case.
7

Études sur la filamentation des impulsions laser ultrabrèves dans l’air / Filamentation of ultrashort laser pulses in air

Salamé, Rami 24 July 2009 (has links)
La propagation des impulsions laser ultra brèves dans l’air se fait sous la forme de structures d’une centaine de micromètres de diamètre appelées filaments, qui ont entre autres les propriétés d’être autoguidées, de se propager sur plusieurs centaines de mètres, de générer un continuum de lumière blanche, etc. Ces propriétés originales trouvent de nombreuses applications dans le domaine de la télédétection des polluants par mesures lidar, le déclenchement et le guidage de la foudre par laser, le LIBS à distance, etc.Au cours de mon travail de thèse, nous avons mené de nombreuses expériences de laboratoire et sur terrain dans le cadre du projet Tera mobile. Nous avons en particulier étudié la géométrie de la filamentation, sa robustesse dans une région de turbulence étendue, la propagation verticale d’un faisceau d’impulsions ultra brèves dans un régime multi joules, et des applications atmosphériques de la filamentation. Nous avons par exemple caractérisé la distribution angulaire de l’émission conique dans le visible et dans l’ultraviolet. Nous avons également prouvé que la turbulence atmosphérique n’est pas un facteur limitant de la propagation des filaments qui arrivent même à garder leurs propriétés spectrales nécessaires aux applications atmosphériques. Enfin nous avons illustré une méthode de déclenchement et de guidage de foudre par laser et réalisé une expérience de condensation de gouttelettes d’eau assistée par laser en laboratoire ainsi que dans une atmosphère réelle. / Ultrashort laser pulses propagate in the air in the form of structures of one hundredmicrons of diameter called “filaments”, which have the properties of self-guiding, propagatingfor hundreds of meters, white light generation, etc. These original properties find severalapplications in the domain of remote sensing of pollutants by non-linear Lidar measurements,lightning control, remote LIBS, etc.During my PhD work we have performed several laboratory experiments and field campaignwithin the context of Teramobile project. In particular we have studied the geometry offilamentation, its robustness in an extended region of turbulent air, the propagation ofultrashort pulses beam in multijoules regime, and atmospheric applications of filamentation.For example, we have characterized the angular distribution of the conical emission in thevisible and ultraviolet spectral bands. In another series of experiments, we have proved thatatmospheric turbulence is not a limiting factor of filaments propagation, which also keep theirspectral properties useful for atmospheric applications. Finally, we have illustrated a methodof laser triggering and guiding of lightning and realized laser induced condensation of waterdroplets in laboratory as well as in a reel atmosphere.
8

Exactly Solvable Light-Matter Interaction Models for Studying Filamentation Dynamics

Brown, Jeffrey Michael January 2016 (has links)
This dissertation demonstrates the usefulness of exactly solvable quantum models in the investigation of light-matter interaction phenomena associated with the propagation of ultrashort laser pulses through gaseous media. This work fits into the larger research effort towards remedying the weaker portions of the standard set of medium modeling equations commonly used in simulations. The ultimate goal is to provide a self-consistent quantum mechanical description that can integrate Maxwell and Schrödinger systems and provide a means to realistically simulate nonlinear optical experiments on relevant scales. The study of exactly solvable models begins with one of the simplest quantum systems available, one with a 1D Dirac-delta function potential plus interaction with the light field. This model contains, in the simplest form, the most important "ingredients" that control optical filamentation, i.e. discrete and continuum electronic states. The importance of both states is emphasized in the optical intensity regime in which filaments form, where both kinds of electronic states simultaneously play a role and may not even be distinguishable. For this model atom, an analytical solution for the time-dependent light-induced atomic response from an arbitrary excitation waveform is obtained. Although this system is well-known and has been studied for decades, this result is probably the most practically useful and general one obtained thus far. Numerical implementation details of the result are also given as the task is far from trivial. Given an efficient implementation, the model is used in light-matter interaction simulations and from these it is apparent that even this toy model can qualitatively reproduce many of the nonlinear phenomena seen in experiments. Not only does this model capture the basic physics of optical filamentation, but it is also well-suited for high harmonic generation simulations. Next, a theoretical framework for using Stark resonant states (or metastable states) to represent the medium's polarization response is presented. Researchers have recognized long ago the utility of Gamow resonant states as a description of various decay processes. Even though a bound electron experiences a similar decay-like process as it transitions into the continuum upon ionization, it was unclear whether field-induced Stark resonant states carry physically relevant information. It is found that they do, and in particular it is possible to use them to capture a medium's polarization response. To this end, two quantum systems with potentials represented by a 1D Dirac-delta function and a 1D square well are solved, and all the necessary quantities for their use as medium models are presented. From these results it is possible to conjecture some general properties that hold for all resonance systems, including systems that reside in higher than one dimensional space. Finally, as a practical application of this theory, the Metastable Electronic State Approach (MESA) is presented as a quantum-based replacement for the standard medium modeling equations.
9

Picosecond laser filamentation in air

Schmitt-Sody, Andreas, Kurz, Heiko G, Bergé, Luc, Skupin, Stefan, Polynkin, Pavel 02 September 2016 (has links)
The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.
10

Filamentation Laser Femtoseconde dans l'Air et Application au Guidage de Decharges Electriques et à la Generation de Rayonnement Terahertz

Houard, Aurélien 15 December 2008 (has links) (PDF)
Le phénomène de filamentation laser apparaît spontanément dans un faisceau laser infra-rouge se propageant dans l'air si sa puissance crête excède quelques Gigawatts. À ce régime d'intensité le faisceau s'effondre sur lui même par effet Kerr et un équilibre dynamique s'installe entre la diffraction, l'effet Kerr et la défocalisation par l'air ionisé, permettant de maintenir une intensité très élevée dans le coeur du faisceau sur une très grande distance. Il donne alors naissance à une mince colonne de plasma dont la longueur peut atteindre des centaines de mètres. De nombreuses applications reposant sur l'utilisation de filaments laser générés à grande distance ont été proposées. Dans ce cas la propagation du faisceau peut être notablement affectée par les turbulences atmosphériques. Pour quantifier les effets de la turbulence sur la filamentation nous avons fait une étude expérimentale et numérique de l'influence de la turbulence de l'air sur la stabilité de pointé du faisceau filamenté et sur la distance de filamentation. Par ailleurs nous avons étudié les propriétés de la colonne de plasma dans le filament et plus particulièrement sa capacité à initier de puissants arcs électriques avec un minimum de pertes, dans l'optique d'applications telles que le captage de forts courants pour l'alimentation de trains rapides. Enfin, une étude complète de l'utilisation de filaments laser comme source de rayonnement Térahertz a été faite. Plusieurs mécanismes de génération de THz ont été mis à jour. Leurs propriétés spectrales et leur énergie permettent d'envisager le développement d'applications de spectroscopie à distance ou pour certains mécanismes, d'atteindre des régimes de physique non-linéaire dans le domaine THz.

Page generated in 0.1241 seconds