• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur l'étude du processus de filamentation laser dans les gaz rares en modèle de champ fort : des influences de la génération de troisième harmonique et de la proximité de résonances dans l'ultraviolet / On the study of the laser filamentation process in rare gases under the strong field model : impacts of third harmonic generation and of the vicinity of resonances in the ultraviolet

Doussot, Julien 19 December 2017 (has links)
Le processus de filamentation découle de la balance dynamique de plusieurs effets linéaires et non-linéaires, permettant l'auto-stabilisation du faisceau laser sur des distances de propagation significativement supérieures à celles prédites par la théorie des faisceaux gaussiens. Cette thèse s'attache à décrire ce phénomène dans les gaz rares en modèle dit de champ fort, par opposition au modèle usuel, utilisé dans le cadre de la théorie des perturbations et s'appuyant sur l'approximation du champ faible. L'influence des harmoniques, jusqu'ici négligée, est alors revisitée tant au niveau microscopique qu'à l'échelle d'une propagation. Il est montré, expérimentalement et par l'appui de simulations numériques, qu'il suffit d'une faible proportion de troisième harmonique pour que la dynamique de la filamentation soit fortement impactée, notamment à travers le processus d'ionisation. Egalement, la proximité d'une résonance peut mener à de fortes modifications du mécanisme d'auto-guidage: lorsqu'un champ fondamental centré à 400nm et sa troisième harmonique interagissent avec du krypton, il est montré que le processus de modulation de phase croisée est renforcé et qu'il peut alors endosser un rôle défocalisant de manière non-négligeable. Une autre situation - à 300nm dans le krypton - amène à un renforcement résonant de la filamentation, se traduisant par l'allongement de la longueur du filament par rapport au cas hors-résonance. / Filamentation originates from the dynamic balance between linear and nonlinear effects, allowing the laser beam autostabilization over distances significantly greater than those predicted by linear optics laws. The aim of this thesis is to describe this phenomenon on rare gases under the strong field model, contrary to the commonly used perturbation model based on the weak field approximation. The influence of harmonics, so far neglected, is then revisited both at the microscopic level and at a propagation scale. It is shown, experimentally and with the support of numerical simulations, that a weak proportion of third harmonic is sufficient to strongly impact the filamentation dynamics, especially through the ionization process. Also, the vicinity of a resonance can lead to strong modifications of the self-guiding mechanism: when a fundamental field centered at 400nm and its third harmonic interact together with krypton, it is shown that the cross-phase modulation process is enhanced and can participate to the beam defocusing. Another situation - at 300nm in krypton - leads to resonantly enhanced filamentation, i.e. to longer filaments compared to the non-resonant case.
2

Étude de dynamiques de photoionisation résonante à l'aide d'impulsions attosecondes / Application of attosecond pulses to resonant photoionization dynamics

Barreau, Lou 18 December 2017 (has links)
Cette thèse s’intéresse à la photo-ionisation de systèmes atomiques et moléculaires en phase gazeuse à l’aide d’harmoniques d’ordre élevé, un rayonnement cohérent dans le domaine de l’extrême ultraviolet (10-100 eV) sous la forme de trains d’impulsions attosecondes (1 as = 10-18 s). Dans un premier temps, les dynamiques électroniques au cours de l’auto-ionisation de gaz rares sont étudiées par interférométrie électronique. L’auto-ionisation résulte de l’interférence entre un chemin d’ionisation direct et un chemin résonant pour lequel l’atome reste transitoirement piégé dans un état excité.L’amplitude de la transition associée à ces processus est accessible via des expériences de photo-ionisation dans le domaine spectral (sur synchrotron par exemple), mais ce n’est pas le cas de la phase qui est pourtant essentielle à la compréhension de la dynamique électronique.Nous avons développé plusieurs méthodes interférométriques afin de mesurer la phase spectrale associée aux transitions électroniques vers des résonances de Fano dans les gaz rares.A partir des informations dans le domaine spectral, nous avons reconstruit pour la première fois la dynamique d'auto-ionisation ultra-rapide dans le domaine temporel et observé les interférences électroniques donnant lieu au profil de raie asymétrique. Dans un second temps, la photo-ionisation de molécules de NO est étudiée dans le référentiel moléculaire et utilisée comme un polarimètre afin de caractériser complètement l’état de polarisation du rayonnement harmonique, et en particulier de distinguer la partie du rayonnement polarisée circulairement d’une éventuelle partie dépolarisée. Nous présentons les résultats des mesures de polarimétrie moléculaire dans le cas de la génération d’harmoniques par un champ à deux couleurs polarisées circulairement en sens opposé. Ces études, complétées par des simulations numériques, permettent de proposer des conditions optimales de génération de rayonnement harmonique polarisé circulairement et contribuent à ouvrir la voie vers des études de dichroïsme circulaire ultrarapide dans la matière. / In this work, photoionzation of atomic and molecular species in the gas phase is investigated with high-harmonic radiation. In a first part, electronic dynamics in the autoionization process of rare gases in studied with electron interferometry. This method gives access to the spectral phase of the transition to the autoionizing state, and allows there construction of the entire autoionization dynamics. The ultrafast electronic dynamics, as well as the build-up of the celebrated asymmetric Fano profile, are observed experimentally for the first time. In a second part, photoionization of NO molecules in the molecular frame is used as a polarimeter to completeley characterize the polarization state of high-harmonics. In particular, this method can address the challenging disentanglement of the circular and unpolarized components of the light. The experimental results, completed by numerical simulations, allow defining optimal generation conditions of fully circularly-polarized harmonics for advanced studies of ultrafast dichroisms in matte
3

Ionisation nonlinéaire dans les matériaux diélectriques et semiconducteurs par laser femtoseconde accordable dans le proche infrarouge

Leyder, Stéphanie 17 December 2013 (has links) (PDF)
La microfabrication 3D par laser dans les matériaux à faible bande interdite nécessitera l'utilisation d'impulsions intenses dans l'infrarouge proche et moyen. Cette étude expérimentale se concentre sur les spécificités de la physique d'ionisation nonlinéaire dans la gamme de longueur d'onde de 1300-2200 nm. Contrairement aux semiconducteurs, l'absorption nonlinéaire mesurée dans les diélectriques est indépendante de la longueur d'onde révélant ainsi l'importance accrue de l'ionisation par effet tunnel avec ces longueurs d'onde. Nous étudions également les rendements et les seuils d'ionisation multiphotonique et avalanche dans le silicium intrinsèque et dopé N. Les résultats couplés à l'observation des matériaux irradiés montrent que les propriétés intrinsèques des semiconducteurs empêchent un dépôt d'énergie suffisamment confiné pour viser directement des applications de modification locale. Ce travail illustre les possibilités de micro-usinage laser 3D dans les diélectriques et les défis de l'extension de cette technique aux semiconducteurs.
4

Probing femtosecond and attosecond electronic and chiral dynamics : high-order harmonic generation, XUV free induction decay, photoelectron spectroscopy and Coulomb explosion / Mesure de dynamiques électroniques et chirales à l'échelle femtoseconde et attoseconde : génération d'harmoniques d'ordre élevé, décroissance libre de l'induction XUV, spectroscopie de photoélectrons et explosion Coulombienne

Beaulieu, Samuel 23 May 2018 (has links)
Ce manuscrit de thèse s'articule autour de l'étude de l'interaction entre des impulsions lumineuses ultra brèves et des atomes ainsi que des molécules polyatomiques et chirales en phase gazeuse. En utilisant des techniques développées en physique attoseconde ainsi qu'en femtochimie, notre objectif général est de parvenir à une meilleure compréhension des dynamiques ultrarapides photoinduites dans la matière. Pour ce faire, nous avons développé des sources de lumière à ultra brèves dans le proche infrarouge et l’infrarouge moyen, qui ont été utilisées pour construire une source de rayons X dans la fenêtre de l’eau, basée surla génération d'harmoniques d’ordre élevé (GHOE), ainsi que pour l’étude de nouveaux canaux de GHOE impliquant des états hautement excités (Rydberg). Cette dernière étude a démontré une émission harmonique via l'ionisation depuis des états de Rydberg et la recombinaison radiative sur l'état fondamental, attirant ainsi notre intérêt pour le rôle des états de Rydberg en physique des champs forts. Cela nous a conduit à étudier la décroissance libre de l’induction XUV de paquets d'ondes électroniques comme une nouvelle technique de spectroscopie 2D. De plus, nous avons découvert que l'interaction entre un laser intense et un atome préparé dans une superposition cohérente d'états électroniques peut conduire à la génération de lignes hyper-Raman concomitantes avec la GHOE standard. Ce mécanisme avait été prédit lors des premiers calculs théoriques de GHOE, mais n'avait jamais été démontré expérimentalement. Par la suite, nous nous sommes intéressé à l’étude de systèmes moléculaires, dans lesquelles une excitation électronique induite par la lumière peut déclencher des dynamiques nucléaires. Nous avons étudié la photo isomérisation non-adiabatique de l’acétylène cationique en vinylidène cationique ainsi que le contrôle cohérent de la localisation électronique lors de la photodissociation de H2+. La simplicité de ces systèmes moléculaires a permis la comparaison des résultats expérimentaux avec des calculs théoriques de pointe,révélant l'importance du couplage entre les degrés de liberté nucléaires et électroniques lors de dynamiques moléculaires photoinduites.Un autre pilier majeur de cette thèse est l'étude de l'ionisation de molécules chirales avec des impulsions chirales. On sait depuis les années 70 que l'ionisation d'un ensemble de molécules chirales aléatoirement orientées, en utilisant une impulsion polarisée circulairement, conduit à une forte asymétrie avant-arrière dans le nombre de photoélectrons émis, selon l'axe de propagation de la lumière (DichroismeCirculaire de Photoélectron, DCPE). Avant cette thèse, le DCPE a été largement étudié à l’aide du rayonnement synchrotron (ionisation à un photon) et a récemment été démontré avec des lasers femtoseconde, via des schémas d'ionisation multiphotonique. Dans cette thèse, nous avons montré que le DCPE est un effet universel, c'est-à-dire qu'il émerge dans tous les régimes d'ionisation: l'ionisation àun photon, l'ionisation à multiphonique, l'ionisation au-dessus du seuil ainsi que l’ionisation par effet tunnel. Ensuite, nous avons démontré que la combinaison d’approches standard de femtochimie et du DCPE peuvent être utilisées pour suivre des dynamique de molécules chirales photoexcitées. En utilisant des approches expérimentales similaires, avec des séquences d'impulsions ayant des états de polarisation contre-intuitifs, nous avons démontré un nouvel effet chiroptique, appelé Dichroïsme Circulaire de Photoexcitation (DCPX), qui est décrit par un courant électronique directionnel et chirosensible, lorsque plusieurs niveaux sont peuplés de manière cohérente avec de la lumière chirale. Enfin, nous avons introduit une perspective temporelle à la photoionisation chirale en mesurant l'asymétrie avant arrièredes retards de photoionisation dans les molécules chirales photoionisées par des impulsions lumineuses chirales. / This thesis manuscript is articulated around the investigation of the interaction between ultrashort light pulses and gas-phase atoms, polyatomic and chiral molecules. Using the toolboxes developed in attosecond and strong-field physics as well as in femtochemistry, our general goal is to reach a better understanding of subtle effects underlying ultrafast light-induced dynamics in matter.To do so, we developed cutting-edge near-infrared and mid-infrared few-cycle light sources, which were used to build a water-window soft-X-ray source based on high order harmonic generation (HHG), as well as to study new HHG channels involving highly-excited (Rydberg) states. The latter study revealed a delayed HHG emission from the ionization of Rydberg states and radiative recombination onto the electronicground state, triggering our interest in the role of Rydberg states in strong-field physics. This led us to investigate the laser-induced XUV Free Induced Decay from electronic wave packets as a new background-free 2D spectroscopic technique.More over, we have found out that strong-field interaction with a well prepared coherent superposition of electronic states led to the generation of hyper-Ramanlines concomitant with standard high-order harmonics. These spectral features were predicted in the early-days theoretical calculations of HHG but had never been reported experimentally.After these experiments in rare gas atoms, we moved to molecular targets, in whichlight-induced electronic excitation can trigger nuclear dynamics. Using simple benchmark molecules, we have studied dynamics involving the participation of both nuclear and electronic degrees of freedom: first, we studied the ultrafast non adiabatic photoisomerization of the acetylene cation into vinylidene cation, andsecond, we investigated the coherent control of electron localization during molecular photodissociation of H2+. The simplicity of these molecular targets enabled the comparison of the experimental results with state-of-the-art theoretical calculations,revealing the importance of the coupling between nuclear and electronic degrees of freedom in photoinduced molecular dynamics.The other major pillar of this thesis is the study of ionization of chiral molecules usingchiral light pulses. It has been known since the 70s that the ionization from an ensemble of randomly oriented chiral molecules, using circularly polarized light pulse,leads to a strong forward-backward asymmetry in the number of emitted photoelectrons, along the light propagation axis (Photoelectron Circular Dichroism,PECD). Prior to this thesis, PECD was widely studied at synchrotron facilities (single photonionization) and had recently been demonstrated using table-top lasers in resonant-enhanced multiphoton ionization schemes. In this thesis, we have shownthat PECD is a universal effect, i.e. that it emerges in all ionization regimes, from single photon ionization, to few-photon ionization, to above-threshold ionization, up to the tunneling ionization regime. This bridges the gap between chiral photoionizationand strong-field physics. Next, we have shown how the combination of standard femtochemistry approaches and PECD can be used to follow the dynamics of photoexcited chiral molecules using time-resolved PECD. Using similar experimental approaches, but by using pulse sequences with counter-intuitive polarization states,we have demonstrated a novel electric dipolar chiroptical effect, called Photoexcitation Circular Dichroism (PXCD), which emerges as a directional and chirosensitive electron current when multiple excited bound states of chiral molecules are coherently populated with chiral light. Last, we introduced a time-domain perspective on chiral photoionization by measuring the forward-backward asymmetry of photoionization delays in chiral molecules photoionized by chiral light pulses. Our work thus carried chiral-sensitive studies down to the femtosecond and attosecond ranges.
5

Méthodes d'étude de la fabrique magnétique appliquées aux roches sédimentaires peu déformées : exemple des Terres Noires subalpines .

Aubourg, Charles 05 February 1990 (has links) (PDF)
L'Anisotropie de Susceptibilité Magnétique (ASM) est maintenant une technique bien éprouvée qui permet de détecter rapidement et précisément l'orientation préférentielle des minéraux d'une roche même faiblement déformée. Lorsque plusieurs marqueurs magnétiques interagissent, il est nécessaire de coupler l'ASM à des études de minéralogie magnétique qui préciseront la nature des marqueurs, et à d'autres types de mesure d'anisotropie. Sont étudiées ici : l'anisotropie de susceptibilité anhystérétique et l'anisotropie de susceptibilité en champ fort. L'application de ces différentes techniques à des marno-calcaires des chaînes subalpines des Alpes françaises, principalement ceux des Terres Noires (Jurassique supérieur), et dans une moindre mesure, ceux du Crétacé inférieur, permet d'élargir le champ d'investigation habituel de ces méthodes magnétiques: on détecte des linéations magnétiques parallèles au cisaillement-transport de la couverture subalpine et qui n'ont pas d'homologues microstructuraux: sur le terrain . on précise les sous-fabriques qui correspondent à l'enregistrement des différents évènements de l'histoire de la déformation par la matrice argileuse et les grains de titanomagnétites ; l'évolution de la déformation finie se traduit par une évolution des paramètres d'anisotropie magnétique. Ces résultats magnétiques peuvent être intégrés dans un modèle d'évolution de l'arc alpin occidental caractérisé par des mouvements de translation et de rotation des blocs crustaux. L'étude de l'aimantation rémanente naturelle des terres Noires permet de retrouver des aimantations primaires du Jurassique supérieur qui présentent un double intérêt : celui de définir la direction du pôle Jurassique supérieur et celui de préciser les rotations possibles de certaines unités de l'arc alpin pendant sa tectogénèse.
6

Ionisation nonlinéaire dans les matériaux diélectriques et semiconducteurs par laser femtoseconde accordable dans le proche infrarouge / Nonlinear ionization inside dielectrics and semiconductors using long wavelength femtosecond laser

Leyder, Stephanie 17 December 2013 (has links)
La microfabrication 3D par laser dans les matériaux à faible bande interdite néces- sitera l’utilisation d’impulsions intenses dans l’infrarouge proche et moyen. Cette étude expérimentale se concentre sur les spécificités de la physique d’ionisation nonlinéaire dans la gamme de longueur d’onde de 1300-2200nm. Contrairement aux semiconducteurs, l’ab- sorption nonlinéaire mesurée dans les diélectriques est indépendante de la longueur d’onde révélant ainsi l’importance accrue de l’ionisation par effet tunnel avec ces longueurs d’onde. Nous étudions également les rendements et les seuils d’ionisation multiphotonique et ava- lanche dans le silicium intrinsèque et dopé N. Les résultats couplés à l’observation des ma- tériaux irradiés montrent que les propriétés intrinsèques des semiconducteurs empêchent un dépôt d’énergie suffisamment confiné pour viser directement des applications de modifica- tion locale. Ce travail illustre les possibilités de micro-usinage laser 3D dans les diélectriques et les défis de l’extension de cette technique aux semiconducteurs. / 3D laser microfabrication inside narrow gap solids like silicon will require the use of long wavelength intense pulses. This experimental study concentrates on the specificity of the nonlinear ionization physics with tightly focused femtosecond laser beams over a wa- velength range of 1300-2200nm. The measured nonlinear absorption is independent of the wavelength in dielectrics revealing the increased importance of tunnel ionization with long wavelength. This can open up an alternative to pulse shortening toward ultraprecision op- tical breakdown in dielectrics. Using n-doped silicon, we study the multiphoton-avalanche absorption yields and thresholds inside semiconductors. Also observations of the irradia- ted materials reveal that the intrinsic properties of semiconductors prevent efficient direct energy deposition in the bulk for applications. This work illustrates opportunities for 3D laser micromachining in dielectrics and challenges for its extension to semiconductors.
7

Double ionisation d' atomes soumis à des impulsions laser intenses : vue de l' espace des phases / Strong field double ionization of atoms : The phase space perspective

Mauger, François 27 June 2012 (has links)
Lorsqu'ils sont soumis à des pulses laser courts et intenses, des atomes peuvent perdre des électrons. Plusieurs canaux sont impliqués dans la double ionisation, comme la NSDI et le scénario associé de la recollision. La recollision est maintenant vue comme la “pierre d'angle de la physique en champ fort” pour les éclairages qu'elle donne dans l'organisation de la matière et en ce qu'elle constitue l'une des manifestations les plus flagrantes de la corrélation électron-électron dans la nature. Dans ce manuscrit, une analyse théorique des mécanismes de double ionisation est menée en utilisant la mécanique classique. Cette description complémente les modèles quantiques en observant la dynamique depuis un cadre de travail différent et avec l'éclairage de la dynamique nonlinéaire. L'analyse, menée dans l'espace des phases, permet l'identification des structures organisatrices qui régulent les différents mécanismes d'ionisation. Pour des champs laser polarisés linéairement, le mécanisme de la recollision est complété par l'image de l'électron interne. L'électron interne donne accès à une description fine de la dynamique de recollision et explique les différentes routes pour la double ionisation. Il permet également de faire des prédictions telles que l'intensité du coude dans la probabilité de double ionisation et explique complètement la RESI. En polarisation circulaire, il est communément cru que la recollision n'est pas possible, en dépit de résultats expérimentaux contradictoires. En fait, l'analyse de l'espace des phases montre que la recollision est possible mais pas accessible à tous les atomes, réconciliant par conséquent les contradictions expérimentales précédentes. / When subjected to strong and short laser pulses, atoms may lose electrons. Several ionization channels are involved in such double ionization events, like nonsequential double ionization (NSDI) and its associated recollision scenario. Recollision is now seen as the “keystone of strong field physics”, for its insights into the organization of matter, and is one of the most dramatic manifestations of electron-electron correlation in nature. In this manuscript a theoretical analysis of the double ionization mechanisms is carried out using classical mechanics. This description complements quantum treatments by observing the dynamics from a different framework, with the light of nonlinear dynamics, as both frameworks exhibit the main ingredient, i.e., strong electron-electron correlation. The analysis, carried out in phase space (e.g., through reduced models) enables the identification of the organizing structures that regulate the ionization channels. For linearly polarized lasers, the recollision mechanism is completed by the picture of the “inner” electron. The inner electron gives access to a fine description of the recollision dynamics and explains the routes to double ionization. It also enables verifiable predictions such as the location of the characteristic knee shape in the double ionization yield versus laser intensity and fully explains delayed ionizations like RESI. For circular polarization, it is commonly believed that recollision is not possible, despite apparently contradictory experimental results. In fact, the phase space analysis shows that recollision is possible but not accessible to all atoms, thus reconciling the previous experimental results.
8

Spectroscopie de phase multi-dimensionnelle de l'émission attoseconde moléculaire / Multidimensionnal Phase Spectroscopy of the Attosecond Molecular Emission

Camper, Antoine 31 January 2014 (has links)
Une molécule soumise à un champ laser infra-rouge intense (dans la gamme des 10 14 W.cm−2) peut être ionisée par effet tunnel. Le paquet d’ondes électroniques (POE) ainsi libéré est alors accéléré par le champ laser et, lorsqu’il repasse à proximité de l’ion parent, il a une certaine probabilité de se recombiner dans son état fondamental. Lors de cette recombinaison, le POE libère son énergie sous la forme d’un flash attoseconde (1as=10 −18s) de rayons XUV. Cette émission cohérente est produite à chaque demi-cycle laser résultant en un train d’impulsions attosecondes. Dans le domaine spectral, ce train correspond à un spectre discret d’harmoniques de la fréquence lasers. L’étape de recombinaison de l’électron avec l’ion parent peut être considérée comme une sonde de la structure des orbitales de valence moléculaires participant à la génération d’harmoniques et de la dynamique ayant lieu dans l’ion pendant l’excursion de l’électron dans le continuum. En caractérisant en amplitude, phase et polarisation, l’émission harmonique associée à cette recombinaison, il est possible de remonter à ces informations structurales et dynamiques avec une précision de l’ordre de l’Ångström et une résolution attoseconde. En particulier, la phase de l’émission harmonique qui est difficile à caractériser, encode des informations indispensables à la bonne compréhension des processus ayant lieu dans le milieu de génération. Nous présentons les principes et testons de nouvelles techniques permet tant de caractériser la phase de l’émission attoseconde suivant plusieurs dimensions à la fois et dans un laps de temps optimisé. Dans une première partie, nous présentons une méthode permettant de caractériser rapidement la phase spectrale de l’émission harmonique, fondée sur un modèle en champ fort de la photoionisation à deux couleurs (RABBIT). Nous introduisons ensuite une nouveau dispositif interférométrique à deux sources, permettant de mesurer les variations de phase de l’émission attoseconde induites par l’excitation d’un paquet d’ondes rotationnelles ou vibrationnelles. Ce dispositif très stable, compact et sobre énergétiquement repose sur l’utilisation d’un élément optique de diffraction (DOE) binaire. Après avoir qualifié notre dispositif par des simulations numériques et des expériences préliminaires, nous montrons qu’il est si sensible qu’il permet de mesurer les variations de phase en fonction du paramètre d’excitation pour différentes trajectoires électroniques dans le continuum. Pour l’azote et le dioxyde de carbone, les mesures expérimentales montrent des variations de phase très différentes pour les deux premières trajectoires électroniques. Ce DOE est ensuite utilisé pour mesurer la phase de l’émission harmonique dans les molécules alignées dans les mêmes conditions expérimentales que le RABBIT. Les deux expériences menées successivement donnent des résultats compatibles que nous combinons par deux méthodes différentes : le CHASSEUR et le MAMMOTH. Enfin, nous proposons de combiner le DOE avec un réseau transitoire pour caractériser simultanément la phase de l'émission attoseconde moléculaire suivant deux axes de polarisation différents. Ces différentes techniques de mesure de phase nous ont permis d’étudier précisément l’émission harmonique suivant différentes dimensions (angle d’alignement, intensité de génération, trajectoire électronique) et d’en tirer de nouvelles informations sur le mécanisme de génération dans les molécules. / When a low-frequency laser pulse is focused to a high intensity into a gas, the electric field of the laser light may become of comparable strength to that felt by the electrons bound in an atom or molecule. A valence electron can then be 'freed' by tunnel ionization, accelerated by the strong oscillating laser field and can eventually recollide and recombine with the ion. The gained kinetic energy is then released as a burst of coherent XUV light which is spectrally organized as harmonics of the fundamental driving field frequency.In high-harmonic molecular spectroscopy, the recombining electron wave-packet probes the structure of the molecule and the dynamics occurring in the ion left after tunnel ionization. The XUV burst is imprinted with this information which can be retrieved through an accurate characterization of the amplitude, phase and polarization of the harmonics. In the case of small molecules as nitrogen and carbon dioxide, impulsive alignment allows to change the direction of recombination of the electron wave-packet with respect to the molecular axis. The XUV burst from the molecular sample should then be characterized both along the spectral dimension and the alignment angle one, and this for the two polarization components. In this report, we present a new experimental scheme to perform two-source interferometry to measure the phase of the emission in aligned molecules along the alignment angle dimension. We how a refined spatio-spectral analysis of the fringe patterns obtained with this very stable interferometer allows one to extend high-harmonic spectroscopy from short to long trajectories. We then show how the combination of this setup together with RABBIT gives access to a bidimensionnal (spectrum and alignment angle) phase map with no arbitrary constant. Finally comparing two-source interferometry with transient grating spectroscopy leads to inconsistent results that can be interpreted taking into consideration polarization effects.

Page generated in 0.0323 seconds