• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coronographie à masque de phase: applications aux télescopes et interféromètres au sol et dans l'espace

Riaud, Pierre 20 January 2003 (has links) (PDF)
Je présente dans mon travail de thèse une étude complète du coronographe à quatre quadrants proposé par D. Rouan (2000). Ce nouveau coronographe offre des performances de réjection théoriques extrêmement importantes (>10^6). Ces performances ouvrent des possibilités de détection d'exo-planètes autour des étoiles proches. Les premiers résultats en laboratoire, ont donné des taux d'atténuation de l'étoile centrale supérieurs à 90000\footnote(: le résumée de la thèse indique 44000, mais une calibration fine de la densité employée nous donne 90000. ) sur le pic central. J'ai donc naturellement étudié toutes les utilisations possibles de ce coronographe au sol comme dans l'espace. En premier lieu, il peut être utilisé sur les télescopes au sol avec une optique adaptative à haut Strehl. Des simulations numériques seront présentées dans le cadre du projet ``Planet Finder'' de l'ESO pour la détection des naines brunes et des planètes géantes chaudes autour des étoiles les plus proches. Ensuite, je me suis intéressé à l'utilisation du 4Q sur l'instrument MIRI (Mid InfraRed Imager) du JWST, puis sur un interféromètre spatial (pour ``Terrestrial Planet Finder'') de la NASA. Néanmoins, un des problèmes majeurs du masque à 4 quadrants reste le chromatisme du déphasage de pi pour une utilisation en large bande dans le cadre de TPF. Je présenterai donc des solutions permettant d'achromatiser le coronographe.
2

Fabrication par masque de phase de réseaux de diffraction d'aire et de période ultimes

Bourgin, Yannick 13 December 2010 (has links) (PDF)
Cette thèse présente un banc d'écriture de réseaux de diffraction de grande surface dont la période peut varier de 100 nm à plusieurs micromètres. Le principe est basé sur l'écriture au vol qui permet d'écrire des longs réseaux en balayant continûment un substrat recouvert de résine photosensible sous un interférogramme de petite dimension créé par un masque de phase. Deux types de masques ont été fabriqués. Le premier, pouvant être décrit comme un interféromètre de type Mach-Zehnder monolithique, présente l'intérêt d'écrire des réseaux de grandes périodes sans limite supérieure. Il est composé de trois réseaux de diffraction, écrits sur la même face d'un substrat épais grâce à destechniques standards de lithographie (e-beam, gravure RIE) accessibles lors d'un échange à l'UEF àJoensuu. A la longueur d'onde 442 nm, ce masque a permis d'écrire un réseau de période de 2 µmde grande dimension à l'aide d'une nappe de lumière divergente. Le second type de masque est monolithique en matériau haut indice. Il est utilisé en immersion à la longueur d'onde de 244 nm; des réseaux de période de 100 nm ont été écrits. La structure capable de supprimer l'ordre zéro transmis a été modélisée et les masques ont été fabriqués par trois partenaires européens du réseau d'excellence NEMO. La gravure du LuAG a également été étudiée en vue de fabriquer un masque de phase pour la longueur d'onde 193 nm. Afin d'écrire des réseaux larges et homogènes, une étude des différentes techniques d'élargissement de faisceau a été réalisée en vue de disposer d'une ligne de lumière avec un profil d'intensité homogène dit " top-hat ", et une méthode de fabrication d'un long masque de phase a été développée
3

Fabrication par masque de phase de réseaux de diffraction d'aire et de période ultimes / Phase mask diffraction grating printing of extreme area and period

Bourgin, Yannick 13 December 2010 (has links)
Cette thèse présente un banc d’écriture de réseaux de diffraction de grande surface dont la période peut varier de 100 nm à plusieurs micromètres. Le principe est basé sur l’écriture au vol qui permet d’écrire des longs réseaux en balayant continûment un substrat recouvert de résine photosensible sous un interférogramme de petite dimension créé par un masque de phase. Deux types de masques ont été fabriqués. Le premier, pouvant être décrit comme un interféromètre de type Mach-Zehnder monolithique, présente l’intérêt d’écrire des réseaux de grandes périodes sans limite supérieure. Il est composé de trois réseaux de diffraction, écrits sur la même face d’un substrat épais grâce à destechniques standards de lithographie (e-beam, gravure RIE) accessibles lors d’un échange à l’UEF àJoensuu. A la longueur d’onde 442 nm, ce masque a permis d’écrire un réseau de période de 2 µmde grande dimension à l’aide d’une nappe de lumière divergente. Le second type de masque est monolithique en matériau haut indice. Il est utilisé en immersion à la longueur d’onde de 244 nm; des réseaux de période de 100 nm ont été écrits. La structure capable de supprimer l’ordre zéro transmis a été modélisée et les masques ont été fabriqués par trois partenaires européens du réseau d’excellence NEMO. La gravure du LuAG a également été étudiée en vue de fabriquer un masque de phase pour la longueur d’onde 193 nm. Afin d’écrire des réseaux larges et homogènes, une étude des différentes techniques d’élargissement de faisceau a été réalisée en vue de disposer d’une ligne de lumière avec un profil d’intensité homogène dit « top-hat », et une méthode de fabrication d’un long masque de phase a été développée / This PhD thesis presents a bench capable to write highly coherent diffraction gratings on a large area (potentially one square meter) with periods varying from 100 nm to several micrometers. The strategy is based on the “write on the fly” method, which allows writing long and stitchingless gratings by scanning a photoresist-coated substrate under a small area interferogram generated by a phase mask. The main object of this thesis concerns the design of the phase-mask. Two different types have been developed. The first type can be described as a monolithic Mach-Zehnder interferometer comprising three diffraction gratings at the same side of a thick fused silica substrate. This approach has the advantage of writing large periods without any upper limitation. Standard lithography techniques (e-beam, RIE) have been used to fabricate the mask during a two months stay at UEF at Joensuu. At the wavelength of 442 nm, a large 2 µm period grating has been made with exposure by a divergent beam. The second type of mask is binary and made in a layer of high refractive index material. It has been used at the 244 nm wavelength and under immersion to write a 100 nm period grating. The modeling was performed to find the optimal structure capable of suppressing the zeroth transmitted order. The masks were made by three European partners within the Network of Excellence NEMO. The etching of LuAG has also been studied in view of making a 193 nm phase-mask. To write large and homogeneous gratings, various methods of beam expansion were compared to generate a light line with a homogeneous intensity profile (top-hat). Solutions for the fabrication of long phase-masks have also been demonstrated
4

Réseaux sublambda pour l'imagerie et la caractérisation de systèmes planétaires extrasolaires

Mawet, Dimitri 15 September 2006 (has links) (PDF)
A l'occasion du onzième anniversaire de la découverte de la première planète extrasolaire autour d'une étoile de type solaire, au moment où environ 200 planètes ont été découvertes hors de notre propre système, de passionnantes questions à propos de leur formation, leur évolution et pour certaines d'entre elles, leur aptitude à abriter la vie, sont plus que jamais posées. Ces interrogations sur nos origines ont déclenché l'émergence de nouveaux concepts technologiques et une très forte volonté pour pousser les technologies existantes à leur limite, tout cela pour répondre au fantastique défi observationnel posé. ELTs, interféromètres kilométriques au sol ou spatiaux, instruments de nouvelle génération: l'imagerie directe de systèmes extrasolaires et leur caractérisation est sans conteste l'un des thèmes observationnels les plus exigeants, tout cela à cause de l'énorme contraste et de la minuscule séparation angulaire entre les étoiles et leurs environements.<br />Cette thèse est dédiée à l'étude d'une classe de micro-composants basés sur la technologie des réseaux sublambda. Nous démontrons l'utilité des ces méta-matériaux intégrés et nano-structurés dans le domaine de l'imagerie à très grande dynamique. Les réseaux sub-lambda offrent en effet des solutions nouvelles et originales aux exigeantes contraintes induites par les objectifs scientifiques ambitieux de l'astrophysique à haut contraste. Après avoir montré l'utilité pratique des outils coronagraphiques modernes dans l'observation de systèmes planétaires en formation, nous présentons diverses solutions pour améliorer la capacité de détection de systèmes coronographiques existants, ainsi que de nouvelles totalement intégrées et susceptibles de surclasser les systèmes traditionnels au sein des instruments de nouvelle génération. Ensuite, toujours en profitant de la flexibilité optique des réseaux sublambda, nous proposons un nouveau concept de déphaseur achromatique pour l'interférométrie en frange noire, qui devra être construit et testé dans le cadre des activités de R&D censées ouvrir la voie à d'ambitieuses missions d'interféromètres spatiaux dédiés à la détection et la caractérisation de planètes semblables à la Terre.
5

Systeme d'imagerie hybride par codage de pupille.

Diaz, Frédéric 06 May 2011 (has links) (PDF)
De nouveaux concepts d'imagerie permettent aux systèmes optiques d'être plus compacts et plus performants. Parmi ces nouvelles techniques, les systèmes d'imagerie hybrides par codage de pupille allient un système optique comprenant un masque de phase et un traitement numérique. La fonction de phase implantée sur le masque rend l'image insensible à un défaut du système optique, qui peut être une aberration ou de la défocalisation. Cet avantage est obtenu au prix d'une déformation connue de l'image qui est ensuite corrigée par un traitement numérique.L'étude des propriétés de ces systèmes a été effectuée en cherchant à augmenter la profondeur de champ d'un système d'imagerie. Un gain sur ce paramètre permet déjà d'envisager le relâchement de contraintes de conception optique telles que la courbure de champ, la défocalisation thermique, le chromatisme... Dans ces techniques d'imagerie, la prise en compte du bruit du capteur constitue l'un des paramètres critiques pour le choix et l'utilisation de méthodes de traitement d'image.Les travaux menés durant cette thèse ont permis de proposer une approche originale de conception conjointe de la fonction de phase du masque et de l'algorithme de restauration d'image. Celle-ci est basée sur un critère de rapport signal à bruit de l'image finale. Contrairement aux approches connues, ce critère montre qu'il n'est pas nécessaire d'obtenir une stricte invariance de la fonction de transfert du système optique. Les paramètres des fonctions de phase optimisés grâce à ce critère sont sensiblement différents de ceux usuellement proposés et conduisent à une amélioration significative de la qualité de l'image.Cette approche de conception optique a été validée expérimentalement sur une caméra thermique non refroidie. Un masque de phase binaire qui a été mis en œuvre en association avec un traitement numérique temps réel implémenté sur une carte GPU a permis d'augmenter la profondeur de champ de cette caméra d'un facteur 3. Compte-tenu du niveau de bruit important introduit par l'utilisation d'un capteur bolométrique, la bonne qualité des images obtenues après traitement démontre l'intérêt de l'approche de conception conjointe appliquée à l'imagerie hybride par codage de pupille.
6

Systeme d'imagerie hybride par codage de pupille / Hybrid imaging system with wavefront coding

Diaz, Frédéric 06 May 2011 (has links)
De nouveaux concepts d’imagerie permettent aux systèmes optiques d’être plus compacts et plus performants. Parmi ces nouvelles techniques, les systèmes d’imagerie hybrides par codage de pupille allient un système optique comprenant un masque de phase et un traitement numérique. La fonction de phase implantée sur le masque rend l’image insensible à un défaut du système optique, qui peut être une aberration ou de la défocalisation. Cet avantage est obtenu au prix d’une déformation connue de l’image qui est ensuite corrigée par un traitement numérique.L’étude des propriétés de ces systèmes a été effectuée en cherchant à augmenter la profondeur de champ d’un système d’imagerie. Un gain sur ce paramètre permet déjà d’envisager le relâchement de contraintes de conception optique telles que la courbure de champ, la défocalisation thermique, le chromatisme… Dans ces techniques d’imagerie, la prise en compte du bruit du capteur constitue l’un des paramètres critiques pour le choix et l’utilisation de méthodes de traitement d’image.Les travaux menés durant cette thèse ont permis de proposer une approche originale de conception conjointe de la fonction de phase du masque et de l’algorithme de restauration d’image. Celle-ci est basée sur un critère de rapport signal à bruit de l’image finale. Contrairement aux approches connues, ce critère montre qu’il n’est pas nécessaire d’obtenir une stricte invariance de la fonction de transfert du système optique. Les paramètres des fonctions de phase optimisés grâce à ce critère sont sensiblement différents de ceux usuellement proposés et conduisent à une amélioration significative de la qualité de l’image.Cette approche de conception optique a été validée expérimentalement sur une caméra thermique non refroidie. Un masque de phase binaire qui a été mis en œuvre en association avec un traitement numérique temps réel implémenté sur une carte GPU a permis d’augmenter la profondeur de champ de cette caméra d’un facteur 3. Compte-tenu du niveau de bruit important introduit par l’utilisation d’un capteur bolométrique, la bonne qualité des images obtenues après traitement démontre l’intérêt de l’approche de conception conjointe appliquée à l’imagerie hybride par codage de pupille. / New imaging techniques allow better and smaller systems. Among these new techniques, hybrid imaging systems with wavefront coding includes an optical system with a phase mask and a processing step. The phase function of the mask makes the system insensitive to a fault of the optical system, such as an aberration or a defocus. The price of this advantage is a deformation of the image acquired by a sensor, which is then processed. The study of the properties of these hybrid imaging systems has been completed by increasing the depth of field of an imaging system, which allows to relax some design constraints such as field curvature, thermal defocus, chromaticism… In these imaging techniques, the consideration the noise of the sensor is one the critical parameters when choosing the image processing method.The work performed during this thesis allowed to proposed an original approach for the cross-conception of the phase function of the mask and the processing step. This approach is based on a signal-to-noise criterion. Unlike known approaches, this criterion shows that a strict insensitivity of the modulation transfer function of the optics is not required. The parameters of the phase functions optimized thanks to this criterion are noticeably different from those usually proposed and lead to a significant increase of the image quality.This cross-conception approach has been validated experimentally on an uncooled thermal camera. A binary phase mask associated with a real-time processing implemented on a GPU allowed to increase the depth of field of this camera by a factor 3. Considering the important level of noise introduced by the use of a bolometric sensor, the good quality of the processed image shows the interest of the cross-conception for hybrid imaging system with wavefront coding.
7

Spectroscopie de phase multi-dimensionnelle de l'émission attoseconde moléculaire / Multidimensionnal Phase Spectroscopy of the Attosecond Molecular Emission

Camper, Antoine 31 January 2014 (has links)
Une molécule soumise à un champ laser infra-rouge intense (dans la gamme des 10 14 W.cm−2) peut être ionisée par effet tunnel. Le paquet d’ondes électroniques (POE) ainsi libéré est alors accéléré par le champ laser et, lorsqu’il repasse à proximité de l’ion parent, il a une certaine probabilité de se recombiner dans son état fondamental. Lors de cette recombinaison, le POE libère son énergie sous la forme d’un flash attoseconde (1as=10 −18s) de rayons XUV. Cette émission cohérente est produite à chaque demi-cycle laser résultant en un train d’impulsions attosecondes. Dans le domaine spectral, ce train correspond à un spectre discret d’harmoniques de la fréquence lasers. L’étape de recombinaison de l’électron avec l’ion parent peut être considérée comme une sonde de la structure des orbitales de valence moléculaires participant à la génération d’harmoniques et de la dynamique ayant lieu dans l’ion pendant l’excursion de l’électron dans le continuum. En caractérisant en amplitude, phase et polarisation, l’émission harmonique associée à cette recombinaison, il est possible de remonter à ces informations structurales et dynamiques avec une précision de l’ordre de l’Ångström et une résolution attoseconde. En particulier, la phase de l’émission harmonique qui est difficile à caractériser, encode des informations indispensables à la bonne compréhension des processus ayant lieu dans le milieu de génération. Nous présentons les principes et testons de nouvelles techniques permet tant de caractériser la phase de l’émission attoseconde suivant plusieurs dimensions à la fois et dans un laps de temps optimisé. Dans une première partie, nous présentons une méthode permettant de caractériser rapidement la phase spectrale de l’émission harmonique, fondée sur un modèle en champ fort de la photoionisation à deux couleurs (RABBIT). Nous introduisons ensuite une nouveau dispositif interférométrique à deux sources, permettant de mesurer les variations de phase de l’émission attoseconde induites par l’excitation d’un paquet d’ondes rotationnelles ou vibrationnelles. Ce dispositif très stable, compact et sobre énergétiquement repose sur l’utilisation d’un élément optique de diffraction (DOE) binaire. Après avoir qualifié notre dispositif par des simulations numériques et des expériences préliminaires, nous montrons qu’il est si sensible qu’il permet de mesurer les variations de phase en fonction du paramètre d’excitation pour différentes trajectoires électroniques dans le continuum. Pour l’azote et le dioxyde de carbone, les mesures expérimentales montrent des variations de phase très différentes pour les deux premières trajectoires électroniques. Ce DOE est ensuite utilisé pour mesurer la phase de l’émission harmonique dans les molécules alignées dans les mêmes conditions expérimentales que le RABBIT. Les deux expériences menées successivement donnent des résultats compatibles que nous combinons par deux méthodes différentes : le CHASSEUR et le MAMMOTH. Enfin, nous proposons de combiner le DOE avec un réseau transitoire pour caractériser simultanément la phase de l'émission attoseconde moléculaire suivant deux axes de polarisation différents. Ces différentes techniques de mesure de phase nous ont permis d’étudier précisément l’émission harmonique suivant différentes dimensions (angle d’alignement, intensité de génération, trajectoire électronique) et d’en tirer de nouvelles informations sur le mécanisme de génération dans les molécules. / When a low-frequency laser pulse is focused to a high intensity into a gas, the electric field of the laser light may become of comparable strength to that felt by the electrons bound in an atom or molecule. A valence electron can then be 'freed' by tunnel ionization, accelerated by the strong oscillating laser field and can eventually recollide and recombine with the ion. The gained kinetic energy is then released as a burst of coherent XUV light which is spectrally organized as harmonics of the fundamental driving field frequency.In high-harmonic molecular spectroscopy, the recombining electron wave-packet probes the structure of the molecule and the dynamics occurring in the ion left after tunnel ionization. The XUV burst is imprinted with this information which can be retrieved through an accurate characterization of the amplitude, phase and polarization of the harmonics. In the case of small molecules as nitrogen and carbon dioxide, impulsive alignment allows to change the direction of recombination of the electron wave-packet with respect to the molecular axis. The XUV burst from the molecular sample should then be characterized both along the spectral dimension and the alignment angle one, and this for the two polarization components. In this report, we present a new experimental scheme to perform two-source interferometry to measure the phase of the emission in aligned molecules along the alignment angle dimension. We how a refined spatio-spectral analysis of the fringe patterns obtained with this very stable interferometer allows one to extend high-harmonic spectroscopy from short to long trajectories. We then show how the combination of this setup together with RABBIT gives access to a bidimensionnal (spectrum and alignment angle) phase map with no arbitrary constant. Finally comparing two-source interferometry with transient grating spectroscopy leads to inconsistent results that can be interpreted taking into consideration polarization effects.
8

Quantification 3D d’une surface dynamique par lumière structurée en impulsion nanoseconde. Application à la physique des chocs, du millimètre au décimètre / 3D measurement of a dynamic surface by structured light in nanosecond regime. Application to shock physics, from millimeters to decimeters

Frugier, Pierre Antoine 29 June 2015 (has links)
La technique de reconstruction de forme par lumière structurée (ou projection de motifs) permet d’acquérir la topographie d’une surface objet avec une précision et un échantillonnage de points dense, de manière strictement non invasive. Pour ces raisons, elle fait depuis plusieurs années l’objet d’un fort intérêt. Les travaux présentés ici ont pour objectif d’adapter cette technique aux conditions sévères des expériences de physique des chocs : aspect monocoup, grande brièveté des phénomènes, diversité des échelles d’observation (de quelques millimètres au décimètre). Pour répondre à ces exigences, nous proposons de réaliser un dispositif autour d’un système d’imagerie rapide par éclairage laser nanoseconde, présentant des performances éprouvées et bien adaptées. La première partie des travaux s’intéresse à analyser les phénomènes prépondérants pour la qualité des images. Nous montrons quels sont les contributeurs principaux à la dégradation des signaux, et une technique efficace de lissage du speckle par fibrage est présentée. La deuxième partie donne une formulation projective de la reconstruction de forme ; celle-ci est rigoureuse, ne nécessitant pas de travailler dans l’approximation de faible perspective, ou de contraindre la géométrie de l’instrument. Un protocole d’étalonnage étendant la technique DLT (Direct Linear Transformation) aux systèmes à lumière structurée est proposé. Le modèle permet aussi, pour une expérience donnée, de prédire les performances de l’instrument par l’évaluation a priori des incertitudes de reconstruction. Nous montrons comment elles dépendent des paramètres du positionnement des sous-ensembles et de la forme-même de l’objet. Une démarche d’optimisation de la configuration de l’instrument pour une reconstruction donnée est introduite. La profondeur de champ limitant le champ objet minimal observable, la troisième partie propose de l’étendre par codage pupillaire : une démarche de conception originale est exposée. L’optimisation des composants est réalisée par algorithme génétique, sur la base de critères et de métriques définis dans l’espace de Fourier. Afin d’illustrer les performances de cette approche, un masque binaire annulaire a été conçu, réalisé et testé expérimentalement. Il corrige des défauts de mise au point très significatifs (Ψ≥±40 radians) sans impératif de filtrage de l’image. Nous montrons aussi que ce procédé donne accès à des composants tolérant des défauts de mise au point extrêmes (Ψ≈±100 radians , après filtrage). La dernière partie présente une validation expérimentale de l’instrument dans différents régimes, et à différentes échelles. Il a notamment été mis en œuvre sur l’installation LULI2000, où il a permis de mesurer dynamiquement la déformation et la fragmentation d’un matériau à base de carbone (champs millimétriques). Nous présentons également les mesures obtenues sous sollicitation pyrotechnique sur un revêtement de cuivre cylindrique de dimensions décimétriques. L’apparition et la croissance rapide de déformations radiales submillimétriques est mesurée à la surface du revêtement. / A Structured Light System (SLS) is an efficient means to measure a surface topography, as it features both high accuracy and dense spatial sampling in a strict non-invasive way. For these reasons, it became in the past years a technique of reference. The aim of the PhD is to bring this technique to the field of shock physics. Experiments involving shocks are indeed very specific: they only allow single-shot acquisition of extremely short phenomena occurring under a large range of spatial extensions (from a few mm to decimeters). In order to address these difficulties, we have envisioned the use of a well-known high-speed technique: pulsed laser illumination. The first part of the work deals with the evaluation of the key-parameters that have to be taken into account if one wants to get sharp acquisitions. The extensive study demonstrates that speckle effect and depth of field limitation are of particular importance. In this part, we provide an effective way to smooth speckle in nanosecond regime, leaving 14% of residual contrast. Second part introduces an original projective formulation for object-points reconstruction. This geometric approach is rigorous; it doesn’t involve any weak-perspective assumptions or geometric constraints (like camera-projector crossing of optical axis in object space). From this formulation, a calibration procedure is derived; we demonstrate that calibrating any structured-light system can be done by extending the Direct Linear Transformation (DLT) photogrammetric approach to SLS. Finally, we demonstrate that reconstruction uncertainties can be derived from the proposed model in an a priori manner; the accuracy of the reconstruction depends both on the configuration of the instrument and on the object shape itself. We finally introduce a procedure for optimizing the configuration of the instrument in order to lower the uncertainties for a given object. Since depth of field puts a limitation on the lowest measurable field extension, the third part focuses on extending it through pupil coding. We present an original way of designing phase components, based on criteria and metrics defined in Fourier space. The design of a binary annular phase mask is exhibited theoretically and experimentally. This one tolerates a defocus as high as Ψ≥±40 radians, without the need for image processing. We also demonstrate that masks designed with our method can restore extremely high defoci (Ψ≈±100 radians) after processing, hence extending depth of focus by amounts unseen yet. Finally, the fourth part exhibits experimental measurements obtained with the setup in different high-speed regimes and for different scales. It was embedded on LULI2000 high energy laser facility, and allowed measurements of the deformation and dynamic fragmentation of a sample of carbon. Finally, sub-millimetric deformations measured in ultra-high speed regime, on a cylinder of copper under pyrotechnic solicitation are presented.

Page generated in 0.4843 seconds