• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 19
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 53
  • 26
  • 24
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coherent imaging of nano-objects with ultra-short X-ray pulses / Imagerie cohérente de nano-objets avec impulsions ultra-rapides de XUV

Barszczak Sardinha, Anna Luiza 17 March 2016 (has links)
L'utilisation des rayons X est indispensable pour obtenir la résolution spatiale de la dizaine de nanomètres. La durée de ces flashs va de la dizaine de femtosecondes (1 fs =10-15 s) à la centaine d'attosecondes (1as=10-18 s). Durant ce laps de temps, les nano-objets n'ont pas le temps d'évoluer, assurant l'obtention d'une image précise. En excitant les nano-objets entre deux flashs de rayons X, il est alors possible de suivre sont évolution temporelle et ainsi de réaliser un « film » de son évolution suite à une excitation. Cette information est extrêmement importante car elle permettra d'identifier les états structuraux intermédiaires des nano-objets qui sont connus comme étant les plus importants pour comprendre leur pouvoir réactionnel.Ce genre d'études vient uniquement de débuter dans le monde en raison de l'apparition très récente des sources de rayons X suffisamment brèves et intenses pour réaliser ce genre d'images. La source de référence est un laser dit à « électrons libres » (LEL) dont il existe trois exemplaires au monde, en Allemagne, aux USA et au Japon. Le faible nombre d'exemplaires provient du coût extrêmement élevé de cette machine. Depuis plusieurs années, nous avons montré au LOA que les lasers pouvaient produire un rayonnement X femtoseconde et suffisamment intense pour réaliser des images de nano-objets avec des résolutions spatiales et temporelles équivalentes à celles obtenues sur LEL.La présente thèse a etait construite autour de trois phases : réalisation d'une source de rayons X polarisés circulairement, réalisation d'un nouveau système plus performant d'imagerie, et test sur des échantillons possédants des nano-structures dont la vitesse d'évolution après excitation est prévue aux environs de 100 fs. Ces études ont eu lieu ao LOA, LCLS, Laboratoire de Chimie-Physique, Matière et Rayonnement (LCPMR) et le CEA de Saclay et BESSY-II en Alemagne. Ils ont permis de acquérir une forte expertise en imagerie nanométrique basée sur la nouvelle technique que nous avons développé. / The use of X-rays is fundamental to obtain a spatial resolution in the order of the dozen of nanometers. The duration of the flashes of radiation is placed between the dozen of femtoseconds (1 fs =10-15 s) to the hundreds of attoseconds (1as=10-18 s). During this time frame nano-objects are static in time, image wise it translates as a precise image. Exciting these nano-objects with flashes of X-ray beams it is possible to follow its temporal evolution and record a "movie" of the evolution due to excitation. This type of information is extremely important since it can allow the identification of intermediary structural states and therefore attaining a better understanding of their reactional power.This type of studies it is making its debut in the scientific community due to the recent development of ultra-fast and intense X-ray sources needed to perform this type of imaging. The referenced source is a free electron laser (FEL) and there are only tree of them in the world nowadays. One in Germany, one in the USA and one in Japan. The small amount of FELs is mainly due to its elevated costs. From some years the LOA has shown that lasers can also provide an X-ray beam in the femtosecond region and intense enough to produce images of nano-objects with equivalent temporal and spatial resolutions.This present thesis was built in tree phases: realization of an X-ray laser source, circularly polarized; realization of a new improved imaging system and testing of the nano-samples possessing nano-structures. These nano-structures have a velocity of evolution after excitation in the range of 100 fs. These studies have had place at LOA, LCLS, Laboratoire de Chimie-Physique, Matière et Rayonnement (LCPMR), the CEA de Saclay, BESSY-II in Germany. These cooperations have insured a specific training and expertise in the world of nanometric imaging based on the new technique developed during this work.
2

Optimalizace impulsního silnoproudého výboje v plynem plněné kapiláře pro aplikační účely - Ar8+ laser 46.9 nm / Optimization of a high current pulse discharge in gas filled capillary for application purposes - Ar8+ laser 46.9 nm

Štraus, Jaroslav January 2018 (has links)
The aim of the thesis was to complete the development of the Czech version of the extremal ultraviolet (XUV) argon capillary laser working at the wavelength 46.9 nm and its adaptation for the first practical applications. A multi-discipline complex of mutually interconnected problems was analyzed and studied: The reasons for a capillary low life-time were investigated using defectoscopic methods, a pre- pulse regime influence was studied with the help of spectroscopy on a physical model. By performing necessary construction and technology changes as well as by the multi-parametric optimisation of working regime, the indicated weaknesses were suppressed. The XUV laser was focused into a footprint of the size about 100 µm and the apparatus was extended by a set of practical aids and accessories for special applications, especially for exposition of the samples at extreme temperatures. As practical applications of the XUV laser, measurements of multilayer mirror reflectivity and filter transmissivity were performed. Using the XUV laser for a thin layer deposition and radiation resistance testing was verified to be practicable in principle. Probably a first temperature dependence of an XUV laser ablation rate was measured, in the temperature range from -180 deg.C to +200 deg.C, on BaF2.
3

Generation and characterization of sub-70 isolated attosecond pulses

Zhang, Qi 01 January 2014 (has links)
Dynamics occurring on microscopic scales, such as electronic motion inside atoms and molecules, are governed by quantum mechanics. However, the Schroedinger equation is usually too complicated to solve analytically for systems other than the hydrogen atom. Even for some simple atoms such as helium, it still takes months to do a full numerical analysis. Therefore, practical problems are often solved only after simplification. The results are then compared with the experimental outcome in both the spectral and temporal domain. For accurate experimental comparison, temporal resolution on the attosecond scale is required. This had not been achieved until the first demonstration of the single attosecond pulse in 2001. After this breakthrough, "attophysics" immediately became a hot field in the physics and optics community. While the attosecond pulse has served as an irreplaceable tool in many fundamental research studies of ultrafast dynamics, the pulse generation process itself is an interesting topic in the ultrafast field. When an intense femtosecond laser is tightly focused on a gaseous target, electrons inside the neutral atoms are ripped away through tunneling ionization. Under certain circumstances, the electrons are able to reunite with the parent ions and release photon bursts lasting only tens to hundreds of attoseconds. This process repeats itself every half cycle of the driving pulse, generating a train of single attosecond pulses which lasts longer than one femtosecond. To achieve true temporal resolution on the attosecond time scale, single isolated attosecond pulses are required, meaning only one attosecond pulse can be produced per driving pulse. Up to now, there are only a few methods which have been demonstrated experimentally to generate isolated attosecond pulses. Pioneering work generated single attosecond pulse using a carrier-envelope phase-stabilized 3.3 fs laser pulse, which is out of reach for most research groups. An alternative method termed as polarization gating generated single attosecond pulses with 5 fs driving pulses, which is still difficult to achieve experimentally. Most recently, a new technique termed as Double Optical Gating (DOG) was developed in our group to allow the generation of single attosecond pulse with longer driving pulse durations. For example, isolated 150 as pulses were demonstrated with a 25 fs driving laser directly from a commercially-available Ti:Sapphire amplifier. Isolated attosecond pulses as short as 107 as have been demonstrated with the DOG scheme before this work. Here, we employ this method to shorten the pulse duration even further, demonstrating world-record isolated 67 as pulses. Optical pulses with attosecond duration are the shortest controllable process up to now and are much faster than the electron response times in any electronic devices. In consequence, it is also a challenge to characterize attosecond pulses experimentally, especially when they feature a broadband spectrum. Similar challenges have previously been met in characterizing femtosecond laser pulses, with many schemes already proposed and well-demonstrated experimentally. Similar schemes can be applied in characterizing attosecond pulses with narrow bandwidth. The limitation of these techniques is presented here, and a method recently developed to overcome those limitations is discussed. At last, several experimental advances toward the characterization of the isolated 25 as pulses, which is one atomic unit time, are discussed briefly.
4

Propriétés statiques et dynamiques électroniques ultrarapides dans les molécules carbonées, du régime linéaire au non-linéaire / Static properties and ultrafast electronic dynamics in carbonate molecules, from linear to non-linear regime

Barillot, Thomas 09 October 2013 (has links)
Les travaux présentés dans cette thèse s'inscrivent dans le cadre du projet MUSES (MUltiscale Electron Spectroscopy) qui consiste en une approche expérimentale et théorique combinée de l'étude des dynamiques électroniques dans les molécules sur une large fenêtre de temps. Ils se concentrent particulièrement sur les dynamiques électroniques dans les molécules carbonées aux échelles femtoseconde et attoseconde. Pour comprendre les processus à l'oeuvre dans ces systèmes complexes, il est nécessaire d'effectuer une étude approfondie de leurs propriétés électroniques en régime d'excitation à la fois linéaire et non linéaire. En effet, une grande partie des modèles de dynamiques électroniques valides dans le cas d'atomes s'effondrent lorsque l'on considère des molécules polyatomiques. Par ailleurs, l'accès à des sources de lumière ultrarapides permet maintenant de sonder expérimentalement des processus multiélectroniques ultrabrefs et de les confronter aux modèles théoriques. Les systèmes modèles C60, PAHs (Naphtalène, Anthracène et Pyrène) et les bases de l'ADN/ARN (bases pyrimidiques Cytosine, Thymine, Uracile) ont été les principaux systèmes étudiés dans cette perspective. Les expériences ont été conduites en spectroscopie de photoélectrons résolue en angle (VMIS) et spectroscopie de masse des produits d'ionisation, sous excitation XUV (10-30 eV) en champ faible (rayonnement synchrotron) ou proche Infrarouge en champ laser intense (∼1013 W/cm2) ainsi que sur une ligne laser pompe sonde XUV-IR disposant d'une résolution temporelle d'une centaine d'attosecondes. A l'aide de ces outils, nous avons mis en évidence et modélisé l'influence de la résonance plasmon de surface à 20 eV dans la dynamique de photoionisation du C60 à l'échelle attoseconde. Nous avons identifié la population d'états de Rydberg similaires lors de l'excitation des bases de l'ADN/ARN par un champ laser infrarouge intense, ce qui permet de contraindre les modèles théoriques sur la réponse non linéaire de systèmes complexes exposés à ce type de rayonnement. Enfin nous avons pu observer en temps des dynamiques non adiabatiques (couplages électrons-noyaux à l'échelle de plusieurs femtosecondes) dans les PAH consécutives à des processus d'ionisation et d'excitation multiélectroniques (mécanisme de shake-up) / The works presented in this thesis are part of project MUSES (MUltiscale Electron Spectroscopy) which consist in a combined experimental and theoretical approach on the study of electronic dynamics in molecules over a large time range. They concentrate particularly on electrons dynamics in carbonates molecules at the femtosecond and attosecond timescales. In order to understand processes occurring in those complex systems, it is necessary to study them in linear excitation regime as well as non linear one. Indeed, many electron dynamics theoretical models, valid in case of atoms or diatomic systems collapse in the case of polyatomic molecules. Moreover, the access to ultrafast light sources now allows to probe multielectronic processes and confront experimental results to theoretical calculations. Model systems C60, PAHs (Naphtalene, Anthracene and Pyrene) as well as DNA/RNA bases (pyrimidic bases Cytosine, Thymine, Uracile) have been the principal objects of study in that purpose. Experiments have been done in angularly resolved photoelectron spectroscopy and ionisation products mass spectroscopy, under XUV (10-30 eV) weak field synchrotron excitation, intense near infrared (I 1013 W/cm2) excitation as well as on a pump-probe XUV-IR laser beamline that give access to a hundred attosecond time resolution. With help of those tools, we evidenced and modeled the influence of the surface plasmon resonance of C60 at 20 eV in its photoionization dynamics at the attosecond timescale. We identified the population of Rydberg states during multiphoton ionisation of DNA/RNA bases similar for all the bases. This constraints theoretical models about non linear response of complex system under those excitation conditions. Finally we have been able to observe non adiabatic dynamics (electrons-nucleus couplings at a few tens of femtoseconds timescale) that appear consecutively of multielectronic excitation and ionization processes (shake-up mechanism)
5

Vers les lasers XUV femtosecondes : étude des propriétés spectrales et temporelles de l'amplification de rayonnement XUV dans un plasma / Toward X-ray lasers : study of the spectral and temporal properties of X-ray radiation amplification in a plasma

Le Marec, Andréa 19 October 2016 (has links)
Cette thèse s’inscrit dans le contexte des travaux visant à réduire la durée d’impulsion des lasers XUV générés dans des plasmas au domaine femtoseconde. La bande spectrale très étroite du milieu amplificateur limite la durée minimum accessible (limite de Fourier). Le milieu amplificateur des lasers XUV sont des plasmas denses et chauds qui peuvent être créés aussi bien par décharge électrique rapide que par différents types de lasers de puissance. Il existe ainsi 4 types de sources lasers XUV distinctes dont les paramètres du plasma (densité, température) dans la zone de gain diffèrent. Or, les propriétés spectrales et temporelles du rayonnement émis sont fortement liées à ces paramètres. L’ensemble des 4 types de lasers XUV opèrent en mode d'amplification de l'émission spontanée (ASE) et 2 d'entre eux peuvent opérer en mode « injecté ». Cette technique consiste à injecter une impulsion harmonique d'ordre élevé femtoseconde, résonante avec la transition laser, à l'une des extrémités du plasma amplificateur. L'important désaccord entre la largeur spectrale du plasma et celle de l'harmonique ne permet pas de conserver la durée fs de cette dernière au cours de l'amplification. Les simulations (code Bloch-Maxwell COLAX) montrent que l'amplification est fortement non-linéaire dans ces systèmes, avec notamment l'apparition d’oscillations de Rabi. La génération d'oscillations de Rabi dans des lasers XUV en mode injecté est actuellement considérée comme un moyen prometteur de produire des lasers XUV fs, mais la manifestation de ces dernières n’a toutefois encore jamais été mise en évidence expérimentalement. Ainsi, une méticuleuse caractérisation expérimentale des propriétés spectrales des 4 types de lasers XUV en relation avec les conditions du plasma, associée à une meilleure compréhension des mécanismes d’amplification sous différentes conditions plasma basée sur des études théoriques et des simulations, sont nécessaires pour atteindre notre objectif. Une large campagne expérimentale visant à caractériser spectralement l'ensemble des différents types de lasers XUV a été menée par notre groupe sur la dernière décennie. La résolution spectrale nécessaire n'étant pas accessible avec les spectromètres actuels, la méthode employée consiste à mesurer la cohérence temporelle du laser XUV par autocorrélation du champ électrique à l'aide d'un interféromètre à division de front d'onde, spécifiquement conçu pour ces mesures, à partir desquelles la largeur spectrale peut être déduite. Le dernier type de laser XUV (PALS, Prague) a été caractérisé dans le cadre de cette thèse. Le temps de cohérence mesuré est de 0,68 ps, significativement inférieur aux valeurs mesurées sur les autres types de lasers XUV. L'analyse de l'ensemble des mesures a fait apparaître un comportement différent suivant que la durée d’impulsion est longue devant le temps de cohérence ou proche de celui-ci. Dans le premier cas les largeurs spectrales déduites sont en bon accord avec les calculs, dans le second l’accord est moins bon et la forme des traces d'autocorrélation n'était pas comprise. Ces observations ont motivé une étude détaillée de l'influence des propriétés temporelles de l'émission ASE des lasers XUV sur la méthode interférométrique employée pour caractériser leur largeur spectrale. Cette étude, basée sur un modèle emprunté aux lasers à électrons libres, a révélé un effet de la cohérence temporelle partielle sur les mesures d'autocorrélation en champ de ces sources. Elle ouvre des perspectives sur l'utilisation de notre méthode pour une mesure simultanée de la largeur spectrale et de la durée d'impulsion de la source. Enfin, une étude basée sur un modèle Bloch-Maxwell a été réalisée pour tenter de mieux comprendre les conditions d'apparition des oscillations de Rabi au cours de l'amplification de l'harmonique dans le plasma de laser XUV. Deux régimes d'amplification, adiabatique et dynamique, autour d'un seuil d'inversion de population ont été mis en évidence. / The work of this thesis was made in the context of the efforts made to reduce the pulse duration of plasma-based XUV lasers down to the femtosecond domain. The very narrow spectral width of the amplifier medium (~ 1E10 - 1E11 Hz) limits the minimum achievable pulse duration (Fourier limit). The amplifier medium of XUV lasers pumped by collisional excitation are dense and hot plasmas that can be created both by rapid electrical discharge and by different types of power lasers. There are thus 4 distinct types of XUV laser sources with different plasma parameters (density, temperature) in the gain region. Yet, the spectral and temporal properties of the emitted radiation are strongly linked to these parameters. All 4types of XUV lasers operate in amplification of spontaneous emission (ASE) mode, and 2 of them, for a few years, can operate in "seeded" mode. This technique consists in injecting a femtosecond high order harmonic pulse (the seed), resonant with the lasing transition, at one extremity of the plasma amplifier. Because of the major mismatch between the spectral width of the plasma and that of the seed the femtosecond duration of the latter is not preserved during amplification. Simulations (COLAX Maxwell-Bloch code) show that the amplification is highly non-linear in such systems, including the appearance of Rabi oscillations. Generating Rabi oscillations in seeded XUV lasers is currently considered a promising way to produce femtosecond XUV lasers. However Rabi oscillations have yet never been experimentally demonstrated. Thus, a meticulous experimental characterization of the spectral properties of the 4 types of XUV lasers in connection with the plasma conditions, combined with a better understanding of amplification mechanisms under different theoretical plasma conditions based on studies and simulations are needed to reach our goal. A wide experimental campaign aiming to spectrally characterize all different types of XUV lasers was conducted by our group over the past decade. The required spectral resolution is not available with the best current spectrometers, so the method we used consists on the measurement of the temporal coherence of the XUV laser through an electric field autocorrelation, using a wave front-division interferometer that was specifically designed for these measures, from which the spectral width can be deduced. The latter type of the four XUV laser types (PALS, Prague) was characterized during this thesis, closing this experimental campaign. The measured coherence time was 0.68 ps, which is significantly lower than the coherence times measured on the other XUV laser types. Analysis of the overall results revealed two different behavior whether the XUV laser has a long pulse duration compared to its coherence time or if the two durations are close. In the first case the inferred spectral widths are in good agreement with theoretical predictions, while in the second case the agreement was not as good and the shape of the electric field autocorrelation traces was not understood. This observation has prompted a detailed study of the influence of temporal properties of ASE XUV lasers on the interferometric methodology used to determine the spectral width of XUV lasers. The study, based on a model developed for X-free electron lasers, revealed an effect of partial temporal coherence in electric field autocorrelation measures of these sources. This study offers perspectives on a simultaneous measure of the spectral width and the duration of theses sources with our method. Finally, a study based on Maxwell-Bloch equations was carried out in order to understand better the conditions of apparition of Rabi oscillations. This study highlighted two amplification regimes, adiabatic and dynamic, around a population inversion threshold.
6

XUV Transient Absorption Spectroscopy: Probing Laser-Perturbed Dipole Polarization in Single Atom, Macroscopic, and Molecular Regimes

Liao, Chen-Ting, Sandhu, Arvinder 08 March 2017 (has links)
We employ an extreme ultraviolet (XUV) pulse to impulsively excite dipole polarization in atoms or molecules, which corresponds to coherently prepared superposition of excited states. A delayed near infrared (NIR) pulse then perturbs the fast evolving polarization, and the resultant absorbance change is monitored in dilute helium, dense helium, and sulfur hexafluoride (SF6) molecules. We observe and quantify the time-dependence of various transient phenomena in helium atoms, including laser-induced phase (LIP), time-varying (AC) Stark shift, quantum path interference, and laser-induced continuum structure. In the case of dense helium targets, we discuss nonlinear macroscopic propagation effects pertaining to LIP and resonant pulse propagation, which account for the appearance of new spectral features in transient lineshapes. We then use tunable NIR photons to demonstrate the wavelength dependence of the transient laser induced effects. In the case of molecular polarization experiment in SF6, we show suppression of XUV photoabsorption corresponding to inter-valence transitions in the presence of a strong NIR field. In each case, the temporal evolution of transient absorption spectra allows us to observe and understand the transient laser induced modifications of the electronic structure of atoms and molecules.
7

Optiques pour les impulsions attosecondes / Optical components for attosecond pulses

Bourassin-Bouchet, Charles 05 December 2011 (has links)
Les plus brefs flashs de lumière qui puissent être produits en laboratoire actuellement ont des durées de quelques dizaines d’attosecondes (1 as = 10-18 s), et ne peuvent être créés que dans le domaine extrême-ultraviolet (XUV). Le développement de composants optiques capables de contrôler et de mettre en forme ce rayonnement attoseconde est crucial pour permettre à ces impulsions de se généraliser. Cette thèse porte donc sur l’étude et la réalisation de tels composants.Les impulsions attosecondes ont la particularité de comporter une dérivée de fréquence intrinsèque au processus utilisé pour leur génération. Cela a pour effet d’augmenter leur durée. Nous avons donc développé des miroirs multicouches capables d’induire une dérive de fréquence opposée sur les impulsions s’y réfléchissant, permettant ainsi de les compresser. En caractérisant les impulsions attosecondes réfléchies par ces miroirs, nous avons pour la première fois observé une telle compression des impulsions attosecondes. Nous avons également développé des miroirs multicouches théoriquement capables de compresser des impulsions sous la barre symbolique des 50 as, soit en dessous du record actuel de durée d’une impulsion lumineuse.La mesure de ces impulsions requiert leur focalisation dans un spectromètre. Or les miroirs focalisants généralement utilisés peuvent très rapidement introduire des aberrations géométriques. A l’aide de simulations numériques et d’une étude analytique, nous avons montré que ces aberrations pouvaient très fortement déformer la structure spatio-temporelle des impulsions attosecondes, provoquant une augmentation de leur durée. Enfin, nous avons montré que ces effets n’étaient pas pris en compte par les techniques actuelles de caractérisation d’impulsions attosecondes, cela pouvant amener à mesurer une impulsion attoseconde plus courte qu’elle ne l’est en réalité. / The shortest flashes of light ever produced so far have durations of a few tens of attoseconds (1 as = 10-18 s), and can only be generated in the extreme ultraviolet spectral range (XUV). Developing optical components able to control and shape such attosecond radiation is crucial to generalize the use of these light pulses. This is the topic of this work.Attosecond pulses happen to be chirped due to the physical process used to generate them. This phenomenon leads to an increase in their duration. Consequently, we developed inversely chirped multilayer mirrors, allowing one to compress the pulses during their reflection off the mirrors. By measuring these reflected pulses, we observed for the first time such a compression of attosecond pulses. Moreover, we developed another set of multilayer mirrors theoretically able to compress pulses below 50 as. That is below the current pulse duration record.Furthermore, the measurement of these pulses requires that they be focussed into a spectrometer. However, typically used focusing mirrors can add geometric aberrations. By the use of numerical simulations and thanks to an analytic study, we showed that these aberrations could strongly distort the spatio-temporal structure of the pulses, and increase their duration. Moreover, we showed that this phenomenon was not taken into account by current attosecond pulse characterization techniques. This could lead to determining the pulse duration to be shorter than it actually is.
8

Etude et développement de sources laser XUV par injection d'harmoniques d'ordre élevé

Goddet, Jean-Philippe 07 May 2009 (has links) (PDF)
Les travaux réalisés dans le cadre de cette thèse visent à étudier une géométrie de lasers XUV inspirée des lasers de puissance. Cette architecture, consistant en un injecteur (une source d'harmoniques d'ordre élevé) couplé à un amplificateur (plasma créé par laser), correspond à celle d'une chaîne laser de puissance dans la gamme spectrale de l'XUV. Le laser à 32,8 nm étudié ici, est produit par l'injection d'harmonique d'ordre élevé dans un plasma de krypton créé par Optical Field Ionisation (OFI). Ce schéma, initialement testé par T. Ditmire en 1995, a été validé en 2003 au Laboratoire d'Optique Appliquée avec un amplificateur plasma créé par l'interaction d'un laser intense et d'un milieu gazeux. Cette thèse s'inscrit dans la continuité de ce dernier travail en tentant d'aborder différents aspects liés, non seulement à une meilleure compréhension des processus physiques impliqués, mais aussi à la caractérisation spatio-temporelle de ce type de source.Nous avons démontré expérimentalement et pour la première fois qu'une source dans le domaine de l'XUV peut être à la fois très compacte, énergétique (1 µJ par impulsion), proche de la limite de diffraction et de celle de Fourier. En effet, grâce au filtrage spatial des harmoniques par le milieu amplificateur, le laser XUV injecté à 32,8 nm montre un profil spatial gaussien avec une divergence de 0,7 mrad (à 1/e2). Le front d'onde a été mesuré avec un senseur de type Hartmann et atteint une valeur de lambda/17 en écart quadratique moyen, démontrant que cette source XUV est limitée par la diffraction. Les caractérisations temporelles du laser montrent que le temps de cohérence est de l'ordre de la durée d'émission spontanée de l'amplificateur. Les résultats de la mesure de la cohérence temporelle présentent un profil gaussien de largeur spectrale relative delta lambda/lambda égale à 10-5 (à mi-hauteur) correspondant à une durée d'impulsion de l'ordre de 5 ps.
9

Etude et développement de sources laser XUV par injection d'harmoniques d'ordre élevé.

Goddet, Jean-Philippe 07 May 2009 (has links) (PDF)
Les travaux réalisés dans le cadre de cette thèse visent à étudier une géométrie de lasers XUV inspirée des lasers de puissance. Cette architecture, consistant en un injecteur (une source d'harmoniques d'ordre élevé) couplé à un amplificateur (plasma créé par laser), correspond à celle d'une chaîne laser de puissance dans la gamme spectrale de l'XUV. Le laser à 32,8 nm étudié ici, est produit par l'injection d'harmonique d'ordre élevé dans un plasma de krypton créé par Optical Field Ionisation (OFI). Ce schéma, initialement testé par T. Ditmire en 1995, a été validé en 2003 au Laboratoire d'Optique Appliquée avec un amplificateur plasma créé par l'interaction d'un laser intense et d'un milieu gazeux. Cette thèse s'inscrit dans la continuité de ce dernier travail en tentant d'aborder différents aspects liés, non seulement à une meilleure compréhension des processus physiques impliqués, mais aussi à la caractérisation spatio-temporelle de ce type de source.Nous avons démontré expérimentalement et pour la première fois qu'une source dans le domaine de l'XUV peut être à la fois très compacte, énergétique (1 µJ par impulsion), proche de la limite de diffraction et de celle de Fourier. En effet, grâce au filtrage spatial des harmoniques par le milieu amplificateur, le laser XUV injecté à 32,8 nm montre un profil spatial gaussien avec une divergence de 0,7 mrad (à 1/e2). Le front d'onde a été mesuré avec un senseur de type Hartmann et atteint une valeur de lambda/17 en écart quadratique moyen, démontrant que cette source XUV est limitée par la diffraction. Les caractérisations temporelles du laser montrent que le temps de cohérence est de l'ordre de la durée d'émission spontanée de l'amplificateur. Les résultats de la mesure de la cohérence temporelle présentent un profil gaussien de largeur spectrale relative delta lambda/lambda égale à 10-5 (à mi-hauteur) correspondant à une durée d'impulsion de l'ordre de 5 ps.
10

Charakterizace a fokusace svazku kapilárního XUV laseru pro účely depozice tenkých vrstev / Characterization and focusing of capillary-discharge XUV-laser beam for purposes of thin-film deposition

Pira, Peter January 2018 (has links)
Title: Characterization and focusing of capillary-discharge XUV-laser beam for purposes of thin-film deposition Author: Peter Pira Department: Department of Surface and Plasma Science Supervisor: doc. RNDr. Jan Wild, CSc., Department of Surface and Plasma Science Abstract: The paper deals with the first results of the interaction of a desk-top high repetition rate XUV laser (wavelength of 46.9 nm) radiation with materials suitable for optoelectronics, in particular the ionic crystals CsI, LiF, etc. Using surface physics methods (AFM, DIC Normanski microscopy) pulse laser imprints were investigated. Based on the results obtained, general information on the nature of ablation and desorption was obtained, which were compared with the results of the XUV-ABLATOR modified code modeling. Plasma arising from ablation was examined by a modified Langmuir probe system. The main result is the pulse laser deposition of thin films of Bi and CsI. Keywords: ablation, Pulsed Laser Deposition, XUV laser

Page generated in 0.0173 seconds