Spelling suggestions: "subject:"nonlinear absorption"" "subject:"onlinear absorption""
1 |
Super-resolution and Nonlinear Absorption with Metallodielectric StacksKatte, Nkorni January 2011 (has links)
No description available.
|
2 |
Synthesis and development of compounds for nonlinear absorption of lightKindahl, Tomas January 2012 (has links)
High-intensity light — for instance that from a laser — can be destructive, not only to the human eye, but also to equipment such as imaging sensors and optical communication devices. Therefore, effective protection against such light is desirable. A protection device should ideally have high transmission to non-damaging light, and should also be fast-acting in order to effectively stop high-intensity light. In working towards a protection device, there is a need to conduct fundamental research in order to understand the processes involved. One of the photophysical processes of special interest in the field of optical power limiting (OPL) is reverse saturable absorption, where a compound in an excited state absorbs light more strongly than it does in its ground state. In this work, several novel organoplatinum compounds for OPL, rationally designed to have a strong reverse saturable absorption, have been synthesized. The compounds have been analyzed using linear and nonlinear absorption spectroscopy, luminescence spectroscopy, and quantum chemistry calculations to gain further knowledge regarding their photophysical properties. In addition to this fundamental research, the absorption capabilities of some of these compounds indicate that they can be used for OPL applications. Consequently, compounds from these studies have been incorporated into a sol–gel glass that could be used in optical systems. / <p>Finansiellt stöd från Kempestiftelsen.</p>
|
3 |
Synthesis and optical characterization of optical power limiting platinum(II) acetylidesCarlsson, Marcus January 2007 (has links)
Interactions between light and a molecule can result in reversible or irreversible changes in properties of both the light and the molecule. Of the many known interactions, nonlinear absorption is a process in which an intense light signal, for instance from a laser, can be moderated. This can be manifested either in a marked lowering of the light’s intensity or in reductions in fluctuations of its intensity. Such an effect is often termed ‘optical power limiting’ (OPL). High power lasers can be very dangerous since their high intensity can damage or destroy eyes and optical sensors. However, there are currently no adequate protective measures against lasers that cover the entire visible region and there is an increasing demand for new or improved OPL materials. Some of the most promising optical power limiting materials are substances that combine nonlinear optical properties with high transparency in normal light, but after activation by a laser beam, their light transmittance falls extremely rapidly via so-called self-activating mechanisms. The platinum(II) acetylides comprise one class of compounds with such properties. In this study, various OPL Pt(II) acetylides were synthesized and their nonlinear optical properties were characterized. The emphasis of the work was on preparation of the compounds, but in order to design organoplatinum chromophores for OPL, attempts were also made to obtain insight into the mechanisms of nonlinear absorption. The work was divided into two main parts. In the first the goal was to find compounds that are good optical limiters in solution. The possibility of isolating the chromophore site by dendron shielding and the effects of incorporating a thiophene ring into the organic molecular system were also explored. In addition, a new route for synthesizing these compounds was developed. The second part was focused on incorporating the most interesting compounds into solid materials. The preparation and characterization of Pt(II) acetylides with molecular groups for covalent attachment to a silica matrix via the solution gel approach is described.
|
4 |
Three-photon Absorption Process In Organic Dyes Enhanced By Surface Plasmon ResonanceCohanoschi, Ion 01 January 2006 (has links)
Multi-photon absorption processes have received significant attention from the scientific community during the last decade, mainly because of their potential applications in optical limiting, data storage and biomedical fields. Perhaps, one of the most investigated processes studied so far has been two-photon absorption (2PA). These investigations have resulted in successful applications in all the fields mentioned above. However, 2PA present some limitations in the biomedical field when pumping at typical 2PA wavelengths. In order to overcome these limitations, three-photon absorption (3PA) process has been proposed. However, 3PA in organic molecules has a disadvantage, typical values of σ3' are small (10-81 cm6s2/photon2), therefore, 3PA excitation requires high irradiances to induce the promotion of electrons from the ground state to the final excited state. To overcome this obstacle, specific molecules that exhibit large 3PA cross-section must be designed. Thus far, there is a lack of systematic studies that correlate 3PA processes with the molecular structure of organic compounds. In order to fill the existent gap in 3PA molecular engineering, in this dissertation we have investigated the structure/property relationship for a new family of fluorene derivatives with very high three-photon absorption cross-sections. We demonstrated that the symmetric intramolecular charge transfer as well as the -electron conjugation length enhances the 3PA cross-section of fluorene derivatives. In addition, we showed that the withdrawing electron character of the attractor groups in a pull-pull geometry proved greater 3PA cross-section. After looking for alternative ways to enhance the effective σ3' of organic molecules, we investigated the enhancement of two- and three-photon absorption processes by means of Surface Plasmon. We demonstrated an enhancement of the effective two- and three-photon absorption cross-section of an organic compound of 480 and 30 folds, respectively. We proved that the enhancement is a direct consequence of the electric field enhancement at a metal/buffer interface. Next, motivated by the demands for new materials with enhanced nonlinear optical properties, we studied the 3PA of Hematoporphyrin IX and J-aggregate supramolecular systems. As a result, we were able to propose the use of 3PA in photodynamic therapy using Photofrin, the only drug approved by the FDA for PDT.
|
5 |
Organic and organometallic compounds for nonlinear absorption of lightLind, Per January 2007 (has links)
The demand for protection of eyes and various types of optical sensors from laser-beam pulses has resulted in the search for optical limiting devices that have the property of being transparent at low intensity of light (normal light), but non-transparent towards high intensity (laser) light. This type of protection may be obtained by using an organic material that displays nonlinear optical (NLO) properties. Examples of NLO effects that can be used for optical limiting are reverse saturable absorption (RSA), two-photon absorption (TPA) and nonlinear refraction. The advantage of using compounds that show such NLO effects is that they can have very fast response and are self-activating, that is, there is no need for externally controlled switching to obtain optical limiting. In this work, several dialkynyl substituted thiophenes and some thiophenyl-alkynyl-platinum(II)-complexes were synthesized and tested for nonlinear absorption of light. A palladium-copper mediated coupling (Sonogashira coupling) was utilized for all reactions between terminal alkynes and aryl halides. Molecular orbital calculations were used in order to screen for suitable properties, such as the second hyperpolarizability, in compounds of interest. A quantitative structure-activity relationship (QSPR) study using a PLS approach were performed in order to identify important molecular electronic variables for optical limiting of organic compounds.
|
6 |
Nonlinear Absorption Initiated Laser-Induced Damage in [Gamma]-Irradiated Fused Silica, Fluorozirconate Glass and Cubic ZirconiaMansour, Nastaran 08 1900 (has links)
The contributions of nonlinear absorption processes to laser-induced damage of three selected groups of transparent dielectrics were investigated. The studied materials were irradiated and non-irradiated fused silica, doped and undoped fluorozirconate glass and cubic zirconia stabilized with yttria. The laser-induced damage thresholds, prebreakdown transmission, and nonlinear absorption processes were studied for several specimens of each group. Experimental measurements were performed at wavelengths of 1064 nm and 532 nm using nanosecond and picosecond Nd:YAG laser pulses.
In the irradiated fused silica and fluorozirconate glasses, we found that there is a correlation between the damage thresholds at wavelength λ and the linear absorption of the studied specimens at λ/2. In other words, the laser-induced breakdown is related to the probability of all possible two-photon transitions. The results are found to be in excellent agreement with a proposed two-photon-initiated electron avalanche breakdown model. In this model, the initial "seed" electrons for the formation of an avalanche are produced by two-photon excitations of E' centers and metallic impurity levels which are located within the bandgaps of irradiated Si02 and fluorozirconate glasses, respectively. Once the initial electrons are liberated in the conduction band, a highly absorbing plasma is formed by avalanche impact ionization. The resultant heating causes optical damage.
In cubic zirconia, we present direct experimental evidence that significant energy is deposited in the samples at wavelength 532 nm prior to electron avalanche formation. The mechanism is found to be due to formation of color centers (F+ or F° centers) by the two-photon absorption process. The presence of these centers was directly shown by transmission measurements. The two-photon absorption (2PA) process was independently investigated and 2PA coefficients obtained. The accumulated effects of the induced centers on the nonlinear absorption measurements were also considered and the 2PA coefficients were measured using short pulses where this effect is negligible. At room temperature, the color centers slowly diffuse out of the irradiated region. The density of these centers was monitored as a function of time. The initial distribution of the centers was assumed to have a Gaussian profile. For this model the diffusion equation was solved exactly and the diffusion constant obtained.
|
7 |
Micro and Nanostructuring of Polymers by Femtosecond Laser PulsesAlshehri, Ali January 2016 (has links)
Micro/Nanostructuring of polymers by femtosecond pulses is of extreme importance because it drives applications in photonics and biomedicine. A femtosecond pulse, with an intensity of ∼ 10^13 W/cm^2, is capable of causing an optical breakdown and inducing permanent modification in the material. With such high intensity, and considering the fact that polymers possess high band gaps, the interaction nature is completely nonlinear, and the material can be modified locally on the surface and in bulk. The irradiated regions exhibit fluorescence, and they display new wetting properties as a consequence of the optical breakdown of a material. The optical breakdown can be investigated by studying the nonlinear absorption. In this thesis, we discuss the nonlinear absorption of fs-laser pulses inside polymers using transmission measurements. We show a step– function–like behaviour of the transmission, dropping abruptly to ∼ 20% at the optical breakdown threshold with a ∼ 40 % reduction in the band gap. Utilizing spectroscopy, we show that the laser-modified regions contain randomly distributed nanoclusters. The presence of localized nanoclusters is responsible for exhibiting fluorescence, within ∼ 10 µm3 for a single pulse. This feature was exploited to demonstrate high-density data storage in Polymethyl methacrylate (PMMA) without any special material preparation. We demonstrate up to 20 layers of embedded data that can be stored in a standard 120 mm disc. Storage capacity of 0.2 TBytes/disc can be achieved by adjusting read laser parameters. Besides the fluorescence capability induced in the bulk of polymers, the hydrophilicity shown by the fs–laser modified surface is utilized to study selective cell growth on the micro-structured Polydimethylsiloxane (PDMS) surface. We show that the C2C12 cells and rabbit anti-mouse protein attach preferentially to the modified regions when the surface is modified with low pulse energies. However, in the high pulse energy regime, the laser-modified regions exhibit superhydrophobicity inhibiting cell adhesion.
|
8 |
Three Dimensional Data Storage in Polymeric SystemsRyan, Christopher James 26 June 2012 (has links)
No description available.
|
9 |
Accurate Determination of Nonlinear Optical Properties of Cadmium Magnesium TellurideLombardo, David 27 May 2015 (has links)
No description available.
|
10 |
Propriedades ópticas não-lineares de oligômeros de anilina / Nonlinear optical properties of aniline oligomersFranzen, Paulo Licênio 29 October 2002 (has links)
Apresentamos os resultados do estudo das não-linearidades ópticas de origem eletrônica de duas moléculas da classe dos oligômeros de anilina: o dímero e o tetrâmero. Foram medidas quatro concentrações de tetrâmero, puras e também dopadas em 33 e 100%; uma de dímero pura e outra dopada em 100%. As soluções foram preparadas usando dimetil-sulfóxido (DMSO) como solvente e a dopagem foi realizada com ácido clorídrico. As amostras foram caracterizadas por medidas de absorção linear e fluorescência antes das medidas não-lineares. Obtivemos os valores da primeira hiperpolarizabilidade (?) para todas as amostras, o índice de refração não-linear (n2) do tetrâmero dopado e não dopado, e a absorção não-linear em função da intensidade e da concentração do tetrâmero. As medidas foram realizadas através das técnicas de Varredura-Z, absorção não-linear e espalhamento Hiper-Rayleigh. Os resultados foram interpretados em termos da comparação entre diferentes estados de dopagem e da variação da seção de choque do estado fundamental para o primeiro excitado. / We report on the study of electronic optical non linearities in two aniline oligomers: dimer and the tetramer. Four tetramer concentrations were measured, pure and also 33 and 100% doped; one of dimer non doped another 100% doped. The solutions were prepared using dimethyl sulfoxide (DMSO) as solvent and the doping was performed with hydrochloric acid. The samples were characterized by measurements of linear absorption and fluorescence. We obtained the values of the first hyperpolarizability (?) for all samples, the non linear index of refraction (n2) for non doped and doped tetramer, and the non linear absorption in function of intensity and concentration of the tetramer. The measurements were accomplished through the techniques of Z-Scan, non linear absorption and Hyper-Rayleigh Scattering. The results were interpreted in terms of the comparison among different doping states and of the variation of cross-section for the transition from ground to the first excited states.
|
Page generated in 0.0902 seconds