• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gain Dynamics of the N2+ Air Laser

Laferriere, Patrick 24 August 2018 (has links)
Lasing from femtosecond laser filaments is a relatively new field of study that has been studied since its first observation in 2003. Such lasing effect is of interest to the scientific community due to its possible application in remote sensing. This thesis studies the lasing dynamics of the excited molecular nitrogen ion N2+ which emits primarily at 391 nm and 428 nm wavelengths. We start by studying the ellipticity dependence of the gain from filaments in ambient air. We then study the ellipticity dependence in a vacuum in a supersonic gas jet to remove the complexity of filamentation. We show that recollision doesn't play a significant role in creating a population inversion by comparing the ellipticity dependence of the gain and high harmonic generation. The rest of this thesis is devoted to shining some light on another possible mechanism. We characterize the gain by its temporal profile, jet position dependence, and density dependence.
2

Attosecond In Situ Measurement and Recombination

Brown, Graham Gardiner 31 January 2022 (has links)
The spectral phase of high harmonic and attosecond pulses is typically shaped by the interaction of the recollision electron with the strong field in the continuum. However, the phase of the transition moment coupling bound and continuum states can be significant in shaping the emitted radiation. The measurement of transition moment phase shifts can reveal information about attosecond electron dynamics and structure. Here, I demonstrate that all-optical approaches to attosecond measurement, based on perturbing recollision with a weak infrared field, are sensitive to transition moment phase shifts arising from electronic structure and multielectron interaction using analytical theory, ab initio simulation, and experiment. The insensitivity of all-optical approaches to transition moment phase shifts arising from ionic structure is found to be a result of a first-order cancellation of the effect of the perturbing field on the recollision electron wave packet and the transition moment. Prior to these findings, it was widely believed that all-optical methods were insensitive to the transition moment phase. The insensitivity of all-optical measurement to both ionic structure and propagation effects will permit for the unambiguous isolation of electron structure and multielectron interaction in attosecond measurement. These results will allow any laboratory capable of generating attosecond pulses to perform measurements of the transition moment phase without an additional experimental apparatus, even at wavelengths where the single photoionization cross-section becomes small.
3

Explosion coulombienne de H2 induite par une impulsion laser intense sub-10 fs

Saugout, Sébastien 05 December 2006 (has links) (PDF)
Ce travail de thèse a pour but l'étude expérimentale et théorique de l'interaction de la molécule H2 avec des impulsions laser de durée inférieure à 10fs. L'éjection des deux électrons de la molécule par le champ laser conduit à la fragmentation du système en deux protons. Ce processus est appelé explosion coulombienne. La mesure des spectres d'énergie cinétique des protons permet d'analyser les dynamiques électronique et nucléaire en fonction des différents paramètres laser. Ces dynamiques sont également analysées dans le cadre d'un modèle théorique non perturbatif, à deux électrons actifs, basé sur l'équation de Schrödinger dépendant du temps. Dans ce modèle, la distance internucléaire est traitée de façon quantique.<br /><br /><br />La complémentarité des résultats expérimentaux et théoriques permet de mettre en évidence la translation des spectres d'énergie cinétique vers les énergies plus élevées lorsque la durée de l'impulsion diminue. Cette étude est réalisée pour des impulsions dans la gamme de 40 à 10fs expérimentalement et jusqu'à 1fs théoriquement. Cette étude montre également que, pour des durées d'impulsion laser inférieures à 4fs, la phase absolue devient un paramètre essentiel à prendre en compte. En outre, la dynamique moléculaire de H2 en champ laser intense ultracourt est également sensible à la valeur de l'éclairement crête de l'impulsion. Les résultats théoriques et expérimentaux montrent que les spectres d'énergie sont centrés autour d'une énergie plus élevée quand l'éclairement augmente. Par ailleurs, deux régimes d'ionisation double sont également mis en évidence théoriquement pour des impulsions de 4fs. La sensibilité de H2 à la qualité temporelle de l'impulsion laser permet une détection, par l'intermédiaire des spectres expérimentaux d'énergie cinétique, des pré- ou post-impulsions susceptibles d'apparaître autour de l'impulsion laser principale. Enfin, les différents types d'ionisation double sont étudiés et les résultats mettent en évidence la dynamique électronique attoseconde de la recollision et l'influence de cette dernière sur la dynamique nucléaire femtoseconde.
4

The Strong Field Simulator: Studying Quantum Trajectories in Classical Fields

Piper, Andrew J. 12 September 2022 (has links)
No description available.
5

Quantum Interferences in the Dynamics of Atoms and Molecules in Electromagnetic Fields / Interférences quantiques dans la dynamique d'atomes et molécules dans un champ électromagnétique

Puthumpally Joseph, Raijumon 29 February 2016 (has links)
Les interférences quantiques apparaissant lors de la superposition cohérente d'états quantiques de la matière sont à l'origine de la compréhension et du contrôle de nombreux processus élémentaires. Dans cette thèse, deux problèmes distincts, qui ont pour origine de tels effets, sont discutés avec leurs applications potentielles : 1. Diffraction électronique induite par Laser (LIED) et imagerie des orbitales moléculaires ; 2. Effets collectifs dans des vapeurs denses et transparence électromagnétique induite par interaction dipôle-dipôle (DIET). La première partie de cette thèse traite du mécanisme de recollision dans des molécules linéaires simples lorsque le système est exposé à un champ laser infrarouge de forte intensité. Cette interaction provoque une ionisation tunnel du système moléculaire, conduisant à la création d'un paquet d'ondes électronique dans le continuum. Ce paquet d'ondes suit une trajectoire oscillante, dirigée par le champ laser. Cela provoque une collision avec l'ion parent qui lui a donné naissance. Ce processus de diffraction peut être de nature inélastique, engendrant la génération d'harmoniques d'ordre élevé (HHG) ou l'ionisation double non-séquentielle, ou de nature élastique, processus que l'on appelle généralement « diffraction électronique induite par laser ». La LIED porte des informations sur la molécule et sur l'état initial à partir duquel les électrons sont arrachés sous forme de motifs de diffraction formés en raison de l'interférence entre différentes voies de diffraction. Dans ce projet, une méthode est développée pour l'imagerie des orbitales moléculaires, reposant sur des spectres de photo-électrons obtenus par LIED. Cette méthode est basée sur le fait que la fonction d'ondes du continuum conserve la mémoire de l'objet à partir duquel elle a été diffractée. Un modèle analytique basé sur l'approximation de champ fort (SFA) est développé pour des molécules simples linéaires et appliqué aux orbitales moléculaires HOMO et HOMO-1 du dioxyde de carbone. L'interprétation et l'extraction des informations orbitalaires imprimées dans les spectres de photo-électrons sont présentées en détail. Par ailleurs, nous estimons que ce type d'approche pourrait être étendu à l'imagerie de la dynamique électro-nucléaire de tels systèmes. La deuxième partie de cette thèse traite des effets collectifs dans des vapeurs atomiques ou moléculaires denses. L'action de la lumière sur ces gaz crée des dipôles induits qui oscillent et produisent des ondes électromagnétiques secondaires. Lorsque les particules constitutives du gaz sont assez proches, ces ondes secondaires peuvent coupler les dipôles induits entre-eux, et lorsque cette corrélation devient prépondérante la réponse du gaz devient une réponse collective. Ceci conduit à des effets spécifiques pour de tels systèmes, comme l'effet Dicke, la superradiance, et les décalages spectraux de Lorentz-Lorenz ou de Lamb. A cette liste d'effets collectifs, nous avons ajouté un effet de transparence induite dans l'échantillon. Cet effet collectif a été appelé « transparence électromagnétique induite par interaction dipôle-dipôle ». La nature collective de l'excitation du gaz dense réduit la vitesse de groupe de la lumière transmise à quelques dizaines de mètre par seconde, créant ainsi une lumière dite « lente ». Ces effets sont démontrés pour les transitions D1 du 85Rb et d'autres applications potentielles sont également discutées. / Quantum interference, coherent superposition of quantum states, are widely used for the understanding and engineering of the quantum world. In this thesis, two distinct problems that are rooted in quantum interference are discussed with their potential applications: 1. Laser induced electron diffraction (LIED) and molecular orbital imaging, 2. Collective effects in dense vapors and dipole induced electromagnetic transparency (DIET). The first part deals with the recollision mechanism in molecules when the system is exposed to high intensity infrared laser fields. The interaction with the intense field will tunnel ionize the system, creating an electron wave packet in the continuum. This wave packet follows an oscillatory trajectory driven by the laser field. This results in a collision with the parent ion from which the wave packet was formed. This scattering process can end up in different channels including either inelastic scattering resulting in high harmonic generation (HHG) and non-sequential double ionization, or elastic scattering often called laser induced electron diffraction. LIED carries information about the molecule and about the initial state from which the electron was born as diffraction patterns formed due to the interference between different diffraction pathways. In this project, a method is developed for imaging molecular orbitals relying on scattered photoelectron spectra obtained via LIED. It is based on the fact that the scattering wave function keeps the memory of the object from which it has been scattered. An analytical model based on the strong field approximation (SFA) is developed for linear molecules and applied to the HOMO and HOMO-1 molecular orbitals of carbon dioxide. Extraction of orbital information imprinted in the photoelectron spectra is presented in detail. It is anticipated that it could be extended to image the electro-nuclear dynamics of such systems. The second part of the thesis deals with collective effects in dense atomic or molecular vapors. The action of light on the vapor samples creates dipoles which oscillate and produce secondary electro-magnetic waves. When the constituent particles are close enough and exposed to a common exciting field, the induced dipoles can affect one another, setting up a correlation which forbids them from responding independently towards the external field. The result is a cooperative response leading to effects unique to such systems which include Dicke narrowing, superradiance, Lorentz-Lorenz and Lamb shifts. To this list of collective effects, one more candidate has been added, which is revealed during this study: an induced transparency in the sample. This transparency, induced by dipole-dipole interactions, is named “dipole-induced electromagnetic transparency”. The collective nature of the dense vapor excitation reduces the group velocity of the transmitted light to a few tens of meter per second resulting in 'slow' light. These effects are demonstrated for the D1 transitions of 85Rb and other potential applications are also discussed.

Page generated in 1.1343 seconds