La polykystose rénale autosomique dominante (ADPKD) est une des maladies génétiques les plus communes. ADPKD se manifeste le plus souvent au stade adulte par la présence de kystes rénaux, et bien souvent de kystes hépatiques, avec une progression très variable. ADPKD mène à une insuffisance rénale: les seuls recours sont la dialyse puis la transplantation rénale. Les mutations dispersées sur les gènes PKD1 (majoritairement; la protéine polycystine-1, PC1) et PKD2 (la protéine polycystine-2, PC2) sont responsables de l’ADPKD. Le mécanisme pathogénétique de perte de fonction (LOF) et donc d’un effet récessif cellulaire est évoqué comme causatif de l’ADPKD. LOF est en effet supporté par les modèles murins d’inactivation de gènes PKD1/PKD2, qui développent de kystes, quoique in utéro et avec une rapidité impressionnante dans les reins mais pas dans le foie. Malgré de nombreuses études in vitro, le rôle de PC1/PC2 membranaire/ciliaire reste plutôt hypothétique et contexte-dépendant. Ces études ont associé PC1/PC2 à une panoplie de voies de signalisation et ont souligné une complexité structurelle et fonctionnelle exceptionnelle, dont l’implication a été testée notamment chez les modèles de LOF. Toutefois, les observations patho-cellulaires chez l’humain dont une expression soutenue, voire augmentée, de PKD1/PC1 et l’absence de phénotypes extrarénaux particuliers remet en question l’exclusivité du mécanisme de LOF. Il était donc primordial 1) d’éclaircir le mécanisme pathogénétique, 2) de générer des outils in vivo authentiques d’ADPKD en terme d’initiation et de progression de la maladie et 3) de mieux connaitre les fonctions des PC1/PC2 indispensables pour une translation clinique adéquate. Cette thèse aborde tous ces points. Tout d’abord, nous avons démontré qu’une augmentation de PKD1 endogène sauvage, tout comme chez l’humain, est pathogénétique en générant et caractérisant en détail un modèle murin transgénique de Pkd1 (Pkd1TAG). Ce modèle reproduit non seulement les caractéristiques humaines rénales, associées aux défauts du cil primaire, mais aussi extrarénales comme les kystes hépatiques. La sévérité du phénotype corrèle avec le niveau d’expression de Pkd1 ce qui supporte fortement un modèle de dosage. Dans un deuxième temps, nous avons démontré par les études de complémentations génétiques que ces deux organes reposent sur une balance du clivage GPS de Pc1, une modification post-traductionelle typique des aGPCR, et dont l’activité et l’abondance semblent strictement contrôlées. De plus, nous avons caractérisé extensivement la biogénèse de Pc1 et de ses dérivés in vivo générés suite au clivage GPS. Nous avons identifié une toute nouvelle forme et prédominante à la membrane, la forme Pc1deN, en plus de confirmer deux fragments N- et C-terminal de Pc1 (NTF et CTF, respectivement) qui eux s’associent de manière non-covalente. Nous avons démontré de façon importante que le trafic de Pc1deN i.e., une forme NTF détachée du CTF, est toutefois dépendant de l’intégrité du fragment CTF in vivo. Par la suite, nous avons généré un premier modèle humanisant une mutation PKD1 non-sens tronquée au niveau du domaine NTF(E3043X) en la reproduisant chez une souris transgénique (Pkd1extra). Structurellement, cette mutation, qui mimique la forme Pc1deN, s’est également avérée causative de PKD. Le modèle Pkd1extra a permis entre autre de postuler l’existence d’une cross-interaction entre différentes formes de Pc1. De plus, nos deux modèles murins sont tous les deux associés à des niveaux altérés de c-Myc et Pc2, et soutiennent une implication réelle de ces derniers dans l’ADPKD tou comme une interaction fonctionnelle entre les polycystines. Finalement, nous avons démontré un chevauchement significatif entre l’ADPKD et le dommage rénal aigüe (ischémie/AKI) dont une expression augmentée de Pc1 et Pc2 mais aussi une stimulation de plusieurs facteurs cystogéniques tel que la tubérine, la β-caténine et l’oncogène c-Myc. Nos études ont donc apporté des évidences cruciales sur la contribution du gène dosage dans l’ADPKD. Nous avons développé deux modèles murins qui serviront d’outil pour l’analyse de la pathologie humaine ainsi que pour la validation préclinique ADPKD. L’identification d’une nouvelle forme de Pc1 ajoute un niveau de complexité supplémentaire expliquant en partie une capacité de régulation de plusieurs voies de signalisation par Pc1. Nos résultats nous amènent à proposer de nouvelles approches thérapeutiques: d’une part, le ciblage de CTF i.e., de style chaperonne, et d’autre part le ciblage de modulateurs intracellulaires (c-Myc, Pc2, Hif1α). Ensemble, nos travaux sont d’une importance primordiale du point de vue informatif et pratique pour un avancement vers une thérapie contre l’ADPKD. Le partage de voies communes entre AKI et ADPKD ouvre la voie aux approches thérapeutiques parallèles pour un traitement assurément beaucoup plus rapide. / Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic diseases. ADPKD is manifested by the presence of renal cysts detected most often in the adult stage, and frequently liver cysts, with highly variable progression. ADPKD leads to kidney failure with the only recourse of dialysis and eventual kidney transplantation. Mutations dispersed throughout the PKD1 gene (major player, the polycystin-1 protein, PC1) and the PKD2 gene (polycystin-2 protein, PC2) are responsible for ADPKD. The loss of function (LOF) pathogenetic mechanism, and therefore a cellular recessive effect, has been suggested as causative of ADPKD. LOF is indeed supported by the PKD1/PKD2 gene inactivation mouse models, which develop cysts, although in utero with impressive speed in the kidney but not in the liver. Despite many in vitro studies, the membrane/ciliary role of PC1/PC2 remains rather hypothetical and context-dependent. These studies have associated PC1/PC2 to a variety of signaling pathways and underlined exceptional structural and functional complexity, whose involvement has been tested especially in LOF models. However, pathocellular observations in humans with sustained and even increased expression of PKD1/PC1, and the absence of particular human extrarenal phenotypes questions the exclusivity of the LOF mechanism. It was therefore essential 1) to clarify the pathogenetic mechanism, 2) to generate in vivo tools authentic of ADPKD in terms of initiation and progression of the disease and 3) to better understand the essential functions of PC1/PC2 for an adequate clinical translation. This thesis addresses all of these issues. First, we demonstrated that an increase in endogenous PKD1, just like in humans, is pathogenetic by generating and characterizing in detail a transgenic mouse model of Pkd1 (Pkd1TAG). This model not only reproduces the renal human characteristics associated with defects of the primary cilium, but also the extrarenal, namely, liver cysts. The severity of the phenotype correlates with the expression level of Pkd1, which strongly supports a dosage model. Secondly, we have demonstrated with genetic complementation studies that these two organs rely on a balance of Pc1 GPS cleavage, a typical post-translational modification of aGPCR, whose activity and abundance seem strictly controlled. Furthermore, we have extensively characterized Pc1 biogenesis and its derivatives in vivo generated upon GPS cleavage. We have identified a new form, predominantly on the membrane, the Pc1deN form, in addition to confirming the two N- and C-terminal Pc1 fragments (NTF and CTF, respectively), which associate non-covalently. Importantly, we have demonstrated that traffic of Pc1deN i.e., the NTF form detached from the CTF, is still dependant on the integrity of the CTF fragment. Next, we generated a first model humanizing a PKD1 nonsense truncated mutation at the level of the NTF(E3043X) domain by reproducing it in a transgenic mouse (Pkd1extra). Structurally, this mutation, which mimics Pc1deN, has also been shown to be causative of PKD. The Pkd1extra model allowed the proposition of the existence of a cross-interaction between different forms of Pc1. In addition, our two mouse models are both associated with altered levels of c-Myc and Pc2, which is supportive of their involvement in ADPKD and a functional interaction between the polycystins. Finally, we have shown a significant overlap between ADPKD and acute renal injury (ischemia/AKI) namely increased expression of Pc1 and Pc2 but also stimulation of several cystogenic factors such as tuberin, β-catenin and the oncogene c-Myc. Our studies have therefore given crucial evidence to the contribution of PKD1 gene dosage mechanism in ADPKD. We have developed two mouse models, which can serve as a tool for the analysis of human pathology as well as for preclinical validation of ADPKD. The identification of a new form of Pc1 adds an additional level of complexity in part explaining the regulation capacity of Pc1 on several signaling pathways. Our findings lead us to propose new therapeutic approaches: firstly, targeting the CTF i.e., chaperone style, and also targeting intracellular modulators (c-Myc, Pc2, Hif1α). Together, our work is of paramount importance in an informative point of view and practical perspective for progress towards a therapy for treating ADPKD. The sharing of common pathways between AKI and ADPKD paves the way for parallel therapeutic approaches for assured much faster treatment.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/12095 |
Date | 03 1900 |
Creators | Kurbegovic, Almira |
Contributors | Trudel, Marie |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0042 seconds