Cette thèse porte sur la segmentation des tumeurs du foie sur des images tomodensitométriques. Ce sujet présente un intérêt certain pour le domaine médical puisque les médecins pourraient ainsi bénéficier d’une méthode reproductible et fiable pour segmenter de telles lésions. Une segmentation précise des tumeurs du foie permettrait en effet d’aider les médecins lors de l’évaluation des lésions (détection, localisation, quantification), du choix d’un traitement, et de sa planification. Les méthodes développées dans ce cadre doivent faire face à trois principales difficultés scientifiques: (i) la grande variabilité de l’apparence et de la forme des structures recherchées, (ii) leur ressemblance avec les régions environnantes et finalement (iii) la faiblesse du rapport signal sur bruit observé dans les images dans lesquelles on travaille. Ce problème est abordé dans une optique d’application clinique et est résolu en suivant une approche en deux temps commençant par le calcul d’une enveloppe du foie, avant de segmenter les tumeurs présentes à l’intérieur de cette enveloppe. Nous commençons par proposer une approche basée sur des atlas pour le calcul d’une enveloppe des foies pathologiques. Tout d’abord, un outil de traitement d’image a été développé pour calculer une enveloppe autour d’un masque binaire, afin d’essayer d’obtenir une enveloppe du foie à partir d’une estimation du parenchyme sain. Un nouvel atlas statistique a ensuite été introduit, puis utilisé pour la segmentation à travers son recalage difféomorphique avec une image. La segmentation est finalement réalisée en combinant les coûts d’appariement des images avec des a priori spatiaux et d’apparence, le tout en suivant une approche multi échelle basée sur des MRFs. La deuxième étape de notre approche porte sur la segmentation des lésions contenues dans ces enveloppes en combinant des techniques d’apprentissage par ordinateur avec de méthodes basées sur des graphes. Un espace d’attributs approprié est tout d’abord défini en considérant des descripteurs de textures déterminés à travers des filtres de diverses tailles et orientations. Des méthodes avancées d’apprentissage automatique sont ensuite utilisées pour déterminer les attributs pertinents, ainsi que l’hyperplan qui sépare les voxels tumoraux des voxels correspondant à des tissus sains dans cet espace d’attributs. Pour finir, la segmentation est réalisée en minimisant une énergie sous forme de MRF, laquelle combine les probabilités d’appartenance de chaque voxel à une classe, avec celles de ses voisins. Des résultats prometteurs montrent les potentiels de notre méthode / This thesis is dedicated to 3D segmentation of liver tumors in CT images. This is a task of great clinical interest since it allows physicians benefiting from reproducible and reliable methods for segmenting such lesions. Accurate segmentation would indeed help them during the evaluation of the lesions, the choice of treatment and treatment planning. Such a complex segmentation task should cope with three main scientific challenges: (i) the highly variable shape of the structures being sought, (ii) their similarity of appearance compared with their surrounding medium and finally (iii) the low signal to noise ratio being observed in these images. This problem is addressed in a clinical context through a two step approach, consisting of the segmentation of the entire liver envelope, before segmenting the tumors which are present within the envelope. We begin by proposing an atlas-based approach for computing pathological liver envelopes. Initially images are pre-processed to compute the envelopes that wrap around binary masks in an attempt to obtain liver envelopes from estimated segmentations of healthy liver parenchyma. A new statistical atlas is then introduced and used to segmentation through its diffeomorphic registration to the new image. This segmentation is achieved through the combination of image matching costs as well as spatial and appearance priors using a multiscale approach with MRF. The second step of our approach is dedicated to lesions segmentation contained within the envelopes using a combination of machine learning techniques and graphbased methods. First, an appropriate feature space is considered that involves texture descriptors being determined through filtering using various scales and orientations. Then, state of the art machine learning techniques are used to determine the most relevant features, as well as the hyperplane that separates the feature space of tumoral voxels to the ones corresponding to healthy tissues. Segmentation is then achieved by minimizing an MRF energy that combines class probabilities and neighbor constraints. Promising results demonstrate the potentials of our method
Identifer | oai:union.ndltd.org:theses.fr/2011ECAP0002 |
Date | 07 January 2011 |
Creators | Pescia, Daniel |
Contributors | Châtenay-Malabry, Ecole centrale de Paris, Paragios, Nikos |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds