Return to search

Extension of the canonical trace and associated determinants

Cette thèse est consacrée à l'étude de la trace canonique et de deux types de déterminants : d'une part un déterminant associé à la trace canonique sur une classe d'opérateurs pseudodifférentiels et d'autre part des déterminants associés à des traces régularisées. Dans une première partie, en dimension impaire, nous revisitons l'unicité de la trace canonique sur l'espace des opérateurs pseudodifférentiels classiques de classe impaire avant de l'étendre aux opérateurs log-polyhomogènes de classe impaire. Nous classifions les traces sur l'algèbre des opérateurs pseudodifférentiels classiques de classe impaire d'ordre zéro. Dans la 2e partie, nous établissons la localité de l'anomalie multiplicative du déterminant pondéré et du déterminant zeta. Ces résultats sont obtenus grâce à l'étude de la localité de la trace pondérée de l'opérateur L(A,B). Nous déduisons alors de ces résultats l'expression locale de ces anomalies multiplicatives en fonction du résidu noncommutatif. Enfin, nous classifions les déterminants multiplicatifs en utilisant la classification des traces sur les opérateurs pseudodifférentiels de classe impaire et d'ordre zéro en dimension impaire. Nous définissons aussi le déterminant symétrisé obtenu de la trace canonique aplliquée au logarithme symétrisé en dimension impaire. Nous montrons la multiplicativité de ce déterminant sous certaines restrictions sur les coupures spectrales des opérateurs.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00725230
Date22 October 2009
CreatorsOuedraogo, Marie-Françoise
PublisherUniversité Blaise Pascal - Clermont-Ferrand II
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds