Return to search

Processus multistables : Propriétés locales et estimation

Nous étudions les propriétés probabilistes, trajectorielles et statistiques des processus stochastiques multistables, qui sont tangents en chaque point à un processus stable. Ils possèdent ainsi une intensité de sauts et une régularité locale qui varient au cours du temps. Nous nous intéressons dans un premier temps aux processus pouvant être définis par une moyenne mobile et possédant la propriété d'être localisables, c'est-à-dire d'être tangents en loi à un processus en chaque point. Des critères assurant la localisabilité, ainsi qu'une méthode de simulation de tels processus sont donnés. Nous proposons ensuite une nouvelle construction et des critères de localisabilité des processus multistables à l'aide d'une représentation de type Ferguson-Klass-LePage. Pour les processus obtenus, nous étudions certaines propriétés probabilistes et trajectorielles. En particulier, nous caractérisons le comportement asymptotique des accroissements des processus multistables, ainsi que leur régularité Höldérienne. Enfin, nous proposons des estimateurs de la fonction de stabilité et de la fonction de localisabilité. La consistance au sens de la convergence Lp est prouvée. Les performances des estimateurs sont illustrées sur des séries simulées suivant deux modèles : le mouvement de Lévy multistable et le mouvement linéaire multifractionnaire multistable.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00531545
Date12 October 2010
CreatorsLe Guével, Ronan
PublisherUniversité de Nantes
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds