Return to search

Formalité liée aux algèbres enveloppantes et étude des algèbres Hom-(co)Poisson / Formality related to universal enveloping algebras and study of Hom-(co)Poisson algebras

Le but de cette thèse est d'étudier quelques aspects algébriques du problème de quantification par déformation. On considère d'une part la formalité dans le cas des algèbres libres et de l'algèbre de Lie so(3), et on s'intéresse d'autre part à la quantification par déformation pour des structures Hom-algébriques. Suivant le résultat de formalité de Kontsevich en 1997 pour les algèbres symétriques, on étudie dans la première partie de cette thèse les algèbres libres, qui sont un cas particulier d'algèbres enveloppantes, et on montre qu'il n'y a pas formalité en général, sauf dans les cas triviaux. On montre aussi qu'il n'y a pas formalité pour l'algèbre de Lie so(3). Les techniques utilisées sont de type homologiques. On calcule la cohomologie de ces algèbres et on procède à la construction du L-infini-quasi-isomorphisme entre l'algèbre de Lie différentielle graduée des cochaînes de Hochschild munie du crochet de Gerstenhaber et l'algèbre de la cohomologie munie du crochet de Schouten. Dans la seconde partie de ce travail, on utilise un principe de déformation par twist pour les structures Hom-algébriques, pour construire de nouvelles structures de même type, ou encore pour déformer une structure classique en une Hom-structure correspondante à l'aide d'un morphisme d'algèbres. En particulier, on applique ce procédé aux structures de Poisson et aux star-produits de Moyal-Weyl. Par ailleurs, on établit une correspondance entre les algèbres enveloppantes d'algèbres Hom-Lie possédant une structure Hom-coPoisson et les bigèbres Hom-Lie. / This thesis aims to study some algebraic aspects of the deformation quantization problem. On one hand, we consider formality for free algebras and the Lie algebra so(3), and on the other hand we study deformation quantization for Hom-algebraic structures. Following Kontsevich's formality result in 1997 for symmetric algebras, we study in the first part free algebras, which are a particular case of envelopping algebras, and show that there is no formality, except for the trivial cases. We also show that there is no formality for the Lie algebra so(3). The tools used are homological ones. We compute the cohomology of these algebras and proceed to the construction of the L-infinity-quasi-isomorphism between the differential graded Lie algebra of the Hochschild cochains endowed with the Gerstenhaber bracket and the cohomology algebra endowed with the Schouten bracket. In the second part of this work, we use a principle of deformation by twist for Hom-algebraic structures, to construct new structures of the same type, or to deform a classical structure in the corresponding Hom-structure using an algebra morphism. In particular, we apply this method to Poisson structures and Moyal-Weyl star-products. Besides, we establish a correspondance between enveloping algebras of Hom-Lie algebras endowed with a Hom-coPoisson structure and Hom-Lie bialgebras.

Identiferoai:union.ndltd.org:theses.fr/2012MULH4079
Date12 November 2012
CreatorsElchinger, Olivier
ContributorsMulhouse, Bordemann, Martin, Makhlouf, Abdenacer
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds