Spelling suggestions: "subject:"deformation quantization"" "subject:"eformation quantization""
1 |
Deformation complexes of algebraic operads and their applicationsPaljug, Brian January 2015 (has links)
Given a reduced cooperad C, we consider the 2-colored operad Cyl(C) which governs diagrams U: V -> W, where V, W are Cobar(C)-algebras, and U is an infinity-morphism. We then investigate the deformation complexes of Cyl(C) and Cobar(C). Our main result is that the restriction maps between between the deformation complexes Der'(Cyl(C)) and Der'(Cobar(C)) are homotopic quasi-isomorphisms of filtered Lie algebras. We show how this result may be applied to modifying diagrams of homotopy algebras by derived automorphism. We then recall that Tamarkin's construction gives us a map from the set of Drinfeld associators to the homotopy classes of Lie infinity quasi-isomorphisms for Hochschild cochains of a polynomial algebra. Due to results of V. Drinfeld and T. Willwacher, both the source and the target of this map are equipped with natural actions of the Grothendieck-Teichmueller group GRT. We use our earlier results to prove that this map from the set of Drinfeld associators to the set of homotopy classes of Lie infinity quasi-isomorphisms for Hochschild cochains is GRT-equivariant. / Mathematics
|
2 |
Configuration spaces, props and wheel-free deformation quantizationBackman, Theo January 2016 (has links)
The main theme of this thesis is higher algebraic structures that come from operads and props. The first chapter is an introduction to the mathematical framework needed for the content of this thesis. The chapter does not contain any new results. The second chapter is concerned with the construction of a configuration space model for a particular 2-colored differential graded operad encoding the structure of two A∞ algebras with two A∞ morphisms and a homotopy between the morphisms. The cohomology of this operad is shown to be the well-known 2-colored operad encoding the structure of two associative algebras and of an associative algebra morphism between them. The third chapter is concerned with deformation quantization of (potentially) infinite dimensional (quasi-)Poisson manifolds. Our proof employs a variation on the transcendental methods pioneered by M. Kontsevich for the finite dimensional case. The first proof of the infinite dimensional case is due to B. Shoikhet. A key feature of the first proof is the construction of a universal L∞ structure on formal polyvector fields. Our contribution is a simplification of B. Shoikhet proof by considering a more natural configuration space and a simpler choice of propagator. The result is also put into a natural context of the dg Lie algebras coming from graph complexes; the L∞ structure is proved to come from a Maurer-Cartan element in the oriented graph complex. The fourth chapter also deals with deformation quantization of (quasi-)Poisson structures in the infinite dimensional setting. Unlike the previous chapter, the methods used here are purely algebraic. Our main theorem is the possibility to deformation quantize quasi-Poisson structures by only using perturbative methods; in contrast to the transcendental methods employed in the previous chapter. We give two proofs of the theorem via the theory of dg operads, dg properads and dg props. We show that there is a dg prop morphism from a prop governing star-products to a dg prop(erad) governing (quasi-)Poisson structures. This morphism gives a theorem about the existence of a deformation quantization of (quasi-)Poisson structure. The proof proceeds by giving an explicit deformation quantization of super-involutive Lie bialgebras and then lifting that to the dg properad governing quasi-Poisson structures. The prop governing star-products was first considered by S.A. Merkulov, but the properad governing quasi-Poisson structures is a new construction. The second proof of the theorem employs the Merkulov-Willwacher polydifferential functor to transfer the problem of finding a morphism of dg props to that of finding a morphism of dg operads.We construct an extension of the well known operad of A∞ algebras such that the representations of it in V are equivalent to an A∞ structure on V[[ħ]]. This new operad is also a minimal model of an operad that can be seen as the extension of the operad of associative algebras by a unary operation. We give an explicit map of operads from the extended associative operad to the operad we get when applying the Merkulov-Willwacher polydifferential functor to the properad of super-involutive Lie bialgebras. Lifting this map so as to go between their respective models gives a new proof of the main theorem.
|
3 |
Formalité liée aux algèbres enveloppantes et étude des algèbres Hom-(co)Poisson / Formality related to universal enveloping algebras and study of Hom-(co)Poisson algebrasElchinger, Olivier 12 November 2012 (has links)
Le but de cette thèse est d'étudier quelques aspects algébriques du problème de quantification par déformation. On considère d'une part la formalité dans le cas des algèbres libres et de l'algèbre de Lie so(3), et on s'intéresse d'autre part à la quantification par déformation pour des structures Hom-algébriques. Suivant le résultat de formalité de Kontsevich en 1997 pour les algèbres symétriques, on étudie dans la première partie de cette thèse les algèbres libres, qui sont un cas particulier d'algèbres enveloppantes, et on montre qu'il n'y a pas formalité en général, sauf dans les cas triviaux. On montre aussi qu'il n'y a pas formalité pour l'algèbre de Lie so(3). Les techniques utilisées sont de type homologiques. On calcule la cohomologie de ces algèbres et on procède à la construction du L-infini-quasi-isomorphisme entre l'algèbre de Lie différentielle graduée des cochaînes de Hochschild munie du crochet de Gerstenhaber et l'algèbre de la cohomologie munie du crochet de Schouten. Dans la seconde partie de ce travail, on utilise un principe de déformation par twist pour les structures Hom-algébriques, pour construire de nouvelles structures de même type, ou encore pour déformer une structure classique en une Hom-structure correspondante à l'aide d'un morphisme d'algèbres. En particulier, on applique ce procédé aux structures de Poisson et aux star-produits de Moyal-Weyl. Par ailleurs, on établit une correspondance entre les algèbres enveloppantes d'algèbres Hom-Lie possédant une structure Hom-coPoisson et les bigèbres Hom-Lie. / This thesis aims to study some algebraic aspects of the deformation quantization problem. On one hand, we consider formality for free algebras and the Lie algebra so(3), and on the other hand we study deformation quantization for Hom-algebraic structures. Following Kontsevich's formality result in 1997 for symmetric algebras, we study in the first part free algebras, which are a particular case of envelopping algebras, and show that there is no formality, except for the trivial cases. We also show that there is no formality for the Lie algebra so(3). The tools used are homological ones. We compute the cohomology of these algebras and proceed to the construction of the L-infinity-quasi-isomorphism between the differential graded Lie algebra of the Hochschild cochains endowed with the Gerstenhaber bracket and the cohomology algebra endowed with the Schouten bracket. In the second part of this work, we use a principle of deformation by twist for Hom-algebraic structures, to construct new structures of the same type, or to deform a classical structure in the corresponding Hom-structure using an algebra morphism. In particular, we apply this method to Poisson structures and Moyal-Weyl star-products. Besides, we establish a correspondance between enveloping algebras of Hom-Lie algebras endowed with a Hom-coPoisson structure and Hom-Lie bialgebras.
|
4 |
Non-Abelian reduction in deformation quantizationFedosov, Boris January 1997 (has links)
We consider a G-invariant star-product algebra A on a symplectic manifold (M,ω) obtained by a canonical construction of deformation quantization. Under assumptions of the classical Marsden-Weinstein theorem we define a reduction of the algebra A with respect to the G-action. The reduced algebra turns out to be isomorphic to a canonical star-product algebra on the reduced phase space B. In other words, we show that the reduction commutes with the canonical G-invariant
deformation quantization. A similar statement in the framework of geometric quantization is known as the Guillemin-Sternberg conjecture (by now completely proved).
|
5 |
Fedosov Quantization and Perturbative Quantum Field TheoryCollini, Giovanni 11 May 2017 (has links) (PDF)
Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the Poisson algebra associated with a finite-dimensional symplectic manifold (\\\"phase space\\\"). His algorithm gives a non-commutative, but associative, product (a so-called \\\"star-product\\\") between smooth phase space functions parameterized by Planck\\\'s constant ℏ, which is treated as a deformation parameter. In the limit as ℏ goes to zero, the star product commutator goes to ℏ times the Poisson bracket, so in this sense his method provides a quantization of the algebra of classical observables. In this work, we develop a generalization of Fedosov\\\'s method which applies to the infinite-dimensional symplectic \\\"manifolds\\\" that occur in Lagrangian field theories. We show that the procedure remains mathematically well-defined, and we explain the relationship of this method to more standard perturbative quantization schemes in quantum field theory.
|
6 |
Position dependent non-commutativity in two dimensionsLópez, Armand Idárraga January 2015 (has links)
Orientador: Prof. Dr. Vladislav Kupriyanov / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Matemática , 2015. / No presente trabalho estudamos as consequências físicas da não-comutatividade dependente da posição e rotacionalmente invariante em duas dimensões [x, y] = iq f (x2 + y2),
usando a teoria de perturbações em mecânica quântica e considerando os modelos
exatamente solúveis como o oscilador harmônico isotrópico e o problema de Landau.
Nós demonstramos a consistência da abordagem proposta, em particular, derivamos a
versão não-comutativa da equação de continuidade e mostramos que a probabilidade é
conservada na nossa abordagem.
Pesquisamos três formas gerais diferentes para a f (r): constante, monomial de r2 e
exponencial Gaussiana. Obtendo resultados diversos de acordo com as características
específicas de cada f (e. g. a potência do monomio, largura da Gaussiana). Para a maior
parte das escolhas da f , temos encontrado quebra da degenerescência. / In the present work we study the physical consequences of the position dependent
rotationally invariant noncommutativity in two dimensions [x, y] = iq f (x2 + y2), using
the perturbation theory in quantum mechanics and considering the exactly solvable
models in standard quantum mechanics: isotropic harmonic oscillator and Landau
problem. We demonstrate the consistency of the proposed approach, in particular,
we derive the noncommutative continuity equation and show that the probability is
conserved in our approach.
We investigate three different general forms of f (r): constant, monomial of r2 and
Gaussian exponential. Obtaining diverse results according to specific characteristics of
each f (e. g. monomial power and Gaussian width). Degeneracy breaking is found in
most of the cases.
|
7 |
Quantização de sistemas não-Lagrangianos e mecânica quântica não-comutativa / Quantization of non-Lagrangian systems and noncommutative quantum mechanicsKupriyanov, Vladislav 23 March 2009 (has links)
Nesta tese apresentamos três problemas interligados: a quântização de teorias não-Lagrangianos, a mecânica quântica não-comutativa (MQNC) e a construção do produto estrela atravéz do ordenamento de Weyl. No contexto do primeiro problema foi elaborada uma abordagem da quantização canônica de sistemas com as equações de movimento não-Lagrangianas. Construímos um princípio da ação mínima para um sistema equivalente das equações diferenciais de primeira ordem. Existe uma ambiguidade não-trivial (que não se reduz a uma derivada total) na definição da função de Lagrange para os sistemas de equações de primeira ordem. Apresentamos uma descrição completa desta ambiguidade. O esquema proposto é aplicado para a quantização da teoria quadrática geral. Também foi construida a quantização do oscilador harmônico amortecido e da carga elétrica com radiação. No contexto da MQNC elaboramos uma formulação da integral de trajetória da MQNC relativística e construímos a generalização não-comutativa da ação da super-partícula. A quantização da ação proposta fornece as equações de Klein-Gordon e de Dirac nas teorias de campo não-comutativas. No contexto do terceiro problema desenvolvemos uma abordagem para a quantização por deformação no plano real com uma estrutura de Poisson arbitrária baseada no ordenamento simétrico dos produtos dos operadores. É formulado um procedimento iterativo simples e efetivo para a construção do produto estrela. Este procedimento nos permitiu calcular o produto estrela em ordens altas (em terceira e quarta ordens), algo que foi feito pela primeira vez. Exceto por uma análise da cohomologia, que não consideramos no artigo, o método proposto dá uma descrição explicita, na linguagem matemática usual da física, do produto estrela. / We present here three interrelated problems: quantization of non-Lagrangian theories, noncommutative quantum mechanics (NCQM) and a constructions of the star product trough the the Weyl ordering. In the context of the first problem an approach to the canonical quantization of systems with non-Lagrangian equations of motion is proposed. We construct an action principle for an equivalent first-order equations of motion. There exists an ambiguity (not reducible to a total time derivative) in associating a Lagrange function with the given set of equations. We give a complete description of this ambiguity. The proposed scheme is applied to quantization of a general quadratic theory. Also the quantization of a damped oscillator and a radiating point-like charge is constructed. In the context of NCQM we propose a path integral formulation of relativistic NCQM and construct a noncommutative generalization of superparticle action. After quantization, the proposed action reproduces the Klein-Gordon and Dirac equations in the noncommutative field theories. In the context of the third problem we develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which based on Weyl symmetrically ordered operator products. A simple and effective iterative procedure of the construction of star products is formulated. This procedure allowed us to calculate the third and the fourth order star products. Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.
|
8 |
Topics in Computational Algebraic Geometry and Deformation QuantizationJost, Christine January 2013 (has links)
This thesis consists of two parts, a first part on computations in algebraic geometry, and a second part on deformation quantization. More specifically, it is a collection of four papers. In the papers I, II and III, we present algorithms and an implementation for the computation of degrees of characteristic classes in algebraic geometry. Paper IV is a contribution to the field of deformation quantization and actions of the Grothendieck-Teichmüller group. In Paper I, we present an algorithm for the computation of degrees of Segre classes of closed subschemes of complex projective space. The algorithm is based on the residual intersection theorem and can be implemented both symbolically and numerically. In Paper II, we describe an algorithm for the computation of the degrees of Chern-Schwartz-MacPherson classes and the topological Euler characteristic of closed subschemes of complex projective space, provided an algorithm for the computation of degrees of Segre classes. We also explain in detail how the algorithm in Paper I can be implemented numerically. Together this yields a symbolical and a numerical version of the algorithm. Paper III describes the Macaulay2 package CharacteristicClasses. It implements the algorithms from papers I and II, as well as an algorithm for the computation of degrees of Chern classes. In Paper IV, we show that L-infinity-automorphisms of the Schouten algebra T_poly(R^d) of polyvector fields on affine space R^d which satisfy certain conditions can be globalized. This means that from a given L-infinity-automorphism of T_poly(R^d) an L-infinity-automorphism of T_poly(M) can be constructed, for a general smooth manifold M. It follows that Willwacher's action of the Grothendieck-Teichmüller group on T_poly(R^d) can be globalized, i.e., the Grothendieck-Teichmüller group acts on the Schouten algebra T_poly(M) of polyvector fields on a general manifold M. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Accepted.</p>
|
9 |
Quantização de sistemas não-Lagrangianos e mecânica quântica não-comutativa / Quantization of non-Lagrangian systems and noncommutative quantum mechanicsVladislav Kupriyanov 23 March 2009 (has links)
Nesta tese apresentamos três problemas interligados: a quântização de teorias não-Lagrangianos, a mecânica quântica não-comutativa (MQNC) e a construção do produto estrela atravéz do ordenamento de Weyl. No contexto do primeiro problema foi elaborada uma abordagem da quantização canônica de sistemas com as equações de movimento não-Lagrangianas. Construímos um princípio da ação mínima para um sistema equivalente das equações diferenciais de primeira ordem. Existe uma ambiguidade não-trivial (que não se reduz a uma derivada total) na definição da função de Lagrange para os sistemas de equações de primeira ordem. Apresentamos uma descrição completa desta ambiguidade. O esquema proposto é aplicado para a quantização da teoria quadrática geral. Também foi construida a quantização do oscilador harmônico amortecido e da carga elétrica com radiação. No contexto da MQNC elaboramos uma formulação da integral de trajetória da MQNC relativística e construímos a generalização não-comutativa da ação da super-partícula. A quantização da ação proposta fornece as equações de Klein-Gordon e de Dirac nas teorias de campo não-comutativas. No contexto do terceiro problema desenvolvemos uma abordagem para a quantização por deformação no plano real com uma estrutura de Poisson arbitrária baseada no ordenamento simétrico dos produtos dos operadores. É formulado um procedimento iterativo simples e efetivo para a construção do produto estrela. Este procedimento nos permitiu calcular o produto estrela em ordens altas (em terceira e quarta ordens), algo que foi feito pela primeira vez. Exceto por uma análise da cohomologia, que não consideramos no artigo, o método proposto dá uma descrição explicita, na linguagem matemática usual da física, do produto estrela. / We present here three interrelated problems: quantization of non-Lagrangian theories, noncommutative quantum mechanics (NCQM) and a constructions of the star product trough the the Weyl ordering. In the context of the first problem an approach to the canonical quantization of systems with non-Lagrangian equations of motion is proposed. We construct an action principle for an equivalent first-order equations of motion. There exists an ambiguity (not reducible to a total time derivative) in associating a Lagrange function with the given set of equations. We give a complete description of this ambiguity. The proposed scheme is applied to quantization of a general quadratic theory. Also the quantization of a damped oscillator and a radiating point-like charge is constructed. In the context of NCQM we propose a path integral formulation of relativistic NCQM and construct a noncommutative generalization of superparticle action. After quantization, the proposed action reproduces the Klein-Gordon and Dirac equations in the noncommutative field theories. In the context of the third problem we develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which based on Weyl symmetrically ordered operator products. A simple and effective iterative procedure of the construction of star products is formulated. This procedure allowed us to calculate the third and the fourth order star products. Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.
|
10 |
Automorphismes hamiltoniens d'un produit star et opérateurs de Dirac Symplectiques / Hamiltonian automorphisms of a star product and symplectic Dirac operatorsLa Fuente Gravy, Laurent 25 September 2013 (has links)
Cette thèse est consacrée à l'étude de deux sujets de géométrie symplectique inspirés<p>de la physique mathématique. Les thèmes que nous développerons mettent en évidence certaines <p>connexions avec la topologie symplectique d'une part, la géométrie Riemannienne d'autre part.<p><p>Dans la partie 1, nous étudions la quantification par déformation formelle d'une variété <p>symplectique, à l'aide de produits star. Nous définissons le groupe des automorphimes<p>hamiltoniens d'un produit star formel. En nous inspirant d'idées de Banyaga, nous <p>identifions ce groupe comme étant le noyau d'un morphisme remarquable sur le groupe<p>des automorphismes du produit star. Nous relions certaines propriétés géométriques de <p>ce groupe d'automorphismes hamiltoniens à la topologie du groupe des difféomorphismes<p>hamiltoniens.<p><p>Dans la partie 2, nous étudions les opérateurs de Dirac symplectiques. Les ingrédients<p>nécessaires à leur construction (algèbre de Weyl, structures $Mp^c$, champs de spineurs <p>symplectiques, connexions symplectiques,) sont également utilisés en quantification géométrique et en<p>quantification par déformation formelle. Les opérateurs de Dirac symplectiques sont construits<p>de manière analogue à l'opérateur de Dirac de la géométrie Riemannienne. Une formule de Weitzenbock<p>lie les opérateurs de Dirac symplectiques à un opérateur elliptique $mathcal{P}$ d'ordre 2. Nous étudions<p>les noyaux de ces opérateurs de Dirac symplectiques et leur lien avec le noyau de P.<p>Sur l'espace hermitien symétrique $CP^n$, nous calculerons le spectre de $mathcal{P}$ et nous <p>prouverons un théorème de Hodge pour les opérateurs de Dirac-Dolbeault symplectiques.<p><p>/<p><p>In this thesis we study two topics of symplectic geometry inspired from mathematical physics.<p><p>Part 1 is devoted to the study of deformation quantization of symplectic manifolds. More precisely, we consider formal star products on a symplectic manifold. We define the group of Hamiltonian automorphisms of a formal star product. Following ideas of Banyaga, we describe this group as the kernel<p>of a morphism on the group of automorphisms of the star product. We relate geometric properties of the group of Hamiltonian automorphisms to the topology of the group of Hamiltonian diffeomorphisms. <p><p>Part 2 is devoted to the study of symplectic Dirac operators. The construction of those operators relies on many concepts used in geometric quantization and formal deformation quantization such as Weyl algebra, $Mp^c$ structures, symplectic spinors, symplectic connections, The construction of symplectic Dirac operators is analogous to the one of Dirac operators in Riemannian geometry. A Weitzenbock formula relates the symplectic Dirac operators to an elliptic operator $mathcal{P}$ of order 2. We study the kernels of the symplectic Dirac operators and relate them to the kernel of $mathcal{P}$. On the hermitian symmetric space <p>$CP^n$, we compute the spectrum of $mathcal{P}$ and we prove a Hodge theorem for the symplectic Dirac-Dolbeault operator. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1408 seconds