• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 9
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Convergence of Kernel Methods for Modeling and Estimation of Dynamical Systems

Guo, Jia 14 January 2021 (has links)
As data-driven modeling becomes more prevalent for representing the uncertain dynamical systems, concerns also arise regarding the reliability of these methods. Recent developments in approximation theory provide a new perspective to studying these problems. This dissertation analyzes the convergence of two kernel-based, data-driven modeling methods, the reproducing kernel Hilbert space (RKHS) embedding method and the empirical-analytical Lagrangian (EAL) model. RKHS embedding is a non-parametric extension of the classical adaptive estimation method that embeds the uncertain function in an RKHS, an infinite-dimensional function space. As a result the original uncertain system of ordinary differential equations are understood as components of a distributed parameter system. Similarly to the classical approach for adaptive estimation, a novel definition of persistent excitation (PE) is introduced, which is proven to guarantee the pointwise convergence of the estimate of function over the PE domain. The finite-dimensional approximation of the RKHS embedding method is based on approximant spaces that consist of kernel basis functions centered at samples in the state space. This dissertation shows that explicit rate of convergence of the RKHS embedding method can be derived by choosing specific types of native spaces. In particular, when the RKHS is continuously embedded in a Sobolev space, the approximation error is proven to decrease at a rate determined by the fill distance of the samples in the PE domain. This dissertation initially studies scalar-valued RKHS, and subsequently the RKHS embedding method is extended for the estimation of vector-valued uncertain functions. Like the scalar-valued case, the formulation of vector-valued RKHS embedding is proven to be well-posed. The notion of partial PE is also generalized, and it is shown that the rate of convergence derived for the scalar-valued approximation still holds true for certain separable operator-valued kernels. The second part of this dissertation studies the EAL modeling method, which is a hybrid mechanical model for Lagrangian systems with uncertain holonomic constraints. For the singular perturbed form of the system, the kernel method is applied to approximate a penalty potential that is introduced to approximately enforce constraints. In this dissertation, the accuracy confidence function is introduced to characterize the constraint violation of an approximate trajectory. We prove that the confidence function can be decomposed into a term representing the bias and another term representing the variation. Numerical simulations are conducted to examine the factors that affect the error, including the spectral filtering, the number of samples, and the accumulation of integration error. / Doctor of Philosophy / As data-driven modeling is becoming more prevalent for representing uncertain dynamical systems, concerns also arise regarding the reliability of these methods. This dissertation employs recent developments in approximation theory to provide rigorous error analysis for two certain kernel-based approaches for modeling dynamical systems. The reproducing kernel Hilbert space (RKHS) embedding method is a non-parametric extension of the classical adaptive estimation for identifying uncertain functions in nonlinear systems. By embedding the uncertain function in a properly selected RKHS, the nonlinear state equation in Euclidean space is transformed into a linear evolution in an infinite-dimensional RKHS, where the function estimation error can be characterized directly and precisely. Pointwise convergence of the function estimate is proven over the domain that is persistently excited (PE). And a finite-dimensional approximation can be constructed within an arbitrarily small error bound. The empirical-analytical Lagrangian (EAL) model is developed to approximate the trajectory of Lagrangian systems with uncertain configuration manifold. Employing the kernel method, a penalty potential is constructed from the observation data to ``push'' the trajectory towards the actual configuration manifold. A probabilistic error bound is derived for the distance of the approximated trajectory away from the actual manifold. The error bound is proven to contain a bias term and a variance term, both of which are determined by the parameters of the kernel method.
2

Instabilidade de pontos de equilíbrio de alguns sistemas lagrangeanos / Instability of Equilibrium Points of Some Lagrangian Systems

Ricardo dos Santos Freire Junior 31 August 2007 (has links)
Neste trabalho, estudamos algumas inversões parciais do teorema de Dirichlet-Lagrange, essencialmente estendendo os resultados em dois graus de liberdade de Garcia e Tal (2003) para algumas situações em $R^$. Mais precisamente, um dos objetivos é mostrar, no contexto da mecânica lagrangeana, que se há um split da energia potencial em uma parte no plano cujo jato $k$ mostra que ela não tem mínimo no ponto de equilíbrio e existe o jato $k-1$ do seu gradiente, e a outra em $R^$ que tenha mínimo no ponto de equilíbrio, este é instável. A instabilidade do ponto de equilíbrio em estudo é provada mostrando a existência de uma trajetória assintótica ao mesmo. Para isso, apresentamos um resultado inicial para lagrangeanos com uma forma bem específica e, a seguir, mostramos que a classe de lagrangeanos que descrevemos acima pode ser levada a esta forma, através de uma adequada mudança de coordenadas espaciais. Além disso, consideramos a extensão desses resultados a sistemas com forças giroscópicas. / In this work, we study some partial inversions of the Lagrange-Dirichlet theorem, extending the results in two degrees of freedom of Garcia and Tal (2003) for some other situations in $\\mathbb^$. More precisely, one of our objectives is to show, in the context of lagrangian mechanics, that if there is a splitting of the potential energy in one part in the plane which its $k$-jet shows that it does not have a minimum in the equilibrium and there exists the $(k-1)$-jet of its gradient, and the other part in $\\mathbb^$ has a minimum in the equilibrium, then the equilibrium point is unstable. Instability of the equilibrium point is shown by proving the existence of an assymptotic trajectory to it. For this purpose, first it is proven a result for lagrangians with a specific form and, next, we show that the class of lagrangians we are interested in can be transformed into this specific form by a subtle change of spatial coordinates. Finally, we consider the extension of this results to systems with gyroscopic forces.
3

Instabilidade de pontos de equilíbrio de alguns sistemas lagrangeanos / Instability of Equilibrium Points of Some Lagrangian Systems

Freire Junior, Ricardo dos Santos 31 August 2007 (has links)
Neste trabalho, estudamos algumas inversões parciais do teorema de Dirichlet-Lagrange, essencialmente estendendo os resultados em dois graus de liberdade de Garcia e Tal (2003) para algumas situações em $R^$. Mais precisamente, um dos objetivos é mostrar, no contexto da mecânica lagrangeana, que se há um split da energia potencial em uma parte no plano cujo jato $k$ mostra que ela não tem mínimo no ponto de equilíbrio e existe o jato $k-1$ do seu gradiente, e a outra em $R^$ que tenha mínimo no ponto de equilíbrio, este é instável. A instabilidade do ponto de equilíbrio em estudo é provada mostrando a existência de uma trajetória assintótica ao mesmo. Para isso, apresentamos um resultado inicial para lagrangeanos com uma forma bem específica e, a seguir, mostramos que a classe de lagrangeanos que descrevemos acima pode ser levada a esta forma, através de uma adequada mudança de coordenadas espaciais. Além disso, consideramos a extensão desses resultados a sistemas com forças giroscópicas. / In this work, we study some partial inversions of the Lagrange-Dirichlet theorem, extending the results in two degrees of freedom of Garcia and Tal (2003) for some other situations in $\\mathbb^$. More precisely, one of our objectives is to show, in the context of lagrangian mechanics, that if there is a splitting of the potential energy in one part in the plane which its $k$-jet shows that it does not have a minimum in the equilibrium and there exists the $(k-1)$-jet of its gradient, and the other part in $\\mathbb^$ has a minimum in the equilibrium, then the equilibrium point is unstable. Instability of the equilibrium point is shown by proving the existence of an assymptotic trajectory to it. For this purpose, first it is proven a result for lagrangians with a specific form and, next, we show that the class of lagrangians we are interested in can be transformed into this specific form by a subtle change of spatial coordinates. Finally, we consider the extension of this results to systems with gyroscopic forces.
4

Estabilidade de Liapunov e derivada radial / Liapunov stability and radial derivative

Alva Morales, Gerard John 31 October 2014 (has links)
Apresentaremos uma classe de energias potenciais $\\Pi \\in C^{\\infty}(\\Omega,R)$ que são s-decidíveis e que admitem funções auxiliares de Cetaev da forma $\\langle abla j^s\\Pi(q),q angle$, $q\\in \\Omega \\subset R^n$ que são s-resistentes. / We will present a class of potential energies $\\Pi \\in C^{\\infty}(\\Omega,R)$ that are s-decidable and that admit auxiliary functions of Cetaev of the form $\\langle abla j^s\\Pi(q),q angle$, $q \\in \\Omega \\subset R^n$ which are s-resistant.
5

Runge-Kutta type methods for differential-algebraic equations in mechanics

Small, Scott Joseph 01 May 2011 (has links)
Differential-algebraic equations (DAEs) consist of mixed systems of ordinary differential equations (ODEs) coupled with linear or nonlinear equations. Such systems may be viewed as ODEs with integral curves lying in a manifold. DAEs appear frequently in applications such as classical mechanics and electrical circuits. This thesis concentrates on systems of index 2, originally index 3, and mixed index 2 and 3. Fast and efficient numerical solvers for DAEs are highly desirable for finding solutions. We focus primarily on the class of Gauss-Lobatto SPARK methods. However, we also introduce an extension to methods proposed by Murua for solving index 2 systems to systems of mixed index 2 and 3. An analysis of these methods is also presented in this thesis. We examine the existence and uniqueness of the proposed numerical solutions, the influence of perturbations, and the local error and global convergence of the methods. When applied to index 2 DAEs, SPARK methods are shown to be equivalent to a class of collocation type methods. When applied to originally index 3 and mixed index 2 and 3 DAEs, they are equivalent to a class of discontinuous collocation methods. Using these equivalences, (s,s)--Gauss-Lobatto SPARK methods can be shown to be superconvergent of order 2s. Symplectic SPARK methods applied to Hamiltonian systems with holonomic constraints preserve well the total energy of the system. This follows from a backward error analysis approach. SPARK methods and our proposed EMPRK methods are shown to be Lagrange-d'Alembert integrators. This thesis also presents some numerical results for Gauss-Lobatto SPARK and EMPRK methods. A few problems from mechanics are considered.
6

Estabilidade de Liapunov e derivada radial / Liapunov stability and radial derivative

Gerard John Alva Morales 31 October 2014 (has links)
Apresentaremos uma classe de energias potenciais $\\Pi \\in C^{\\infty}(\\Omega,R)$ que são s-decidíveis e que admitem funções auxiliares de Cetaev da forma $\\langle abla j^s\\Pi(q),q angle$, $q\\in \\Omega \\subset R^n$ que são s-resistentes. / We will present a class of potential energies $\\Pi \\in C^{\\infty}(\\Omega,R)$ that are s-decidable and that admit auxiliary functions of Cetaev of the form $\\langle abla j^s\\Pi(q),q angle$, $q \\in \\Omega \\subset R^n$ which are s-resistant.
7

Quantização de sistemas não-Lagrangianos e mecânica quântica não-comutativa / Quantization of non-Lagrangian systems and noncommutative quantum mechanics

Kupriyanov, Vladislav 23 March 2009 (has links)
Nesta tese apresentamos três problemas interligados: a quântização de teorias não-Lagrangianos, a mecânica quântica não-comutativa (MQNC) e a construção do produto estrela atravéz do ordenamento de Weyl. No contexto do primeiro problema foi elaborada uma abordagem da quantização canônica de sistemas com as equações de movimento não-Lagrangianas. Construímos um princípio da ação mínima para um sistema equivalente das equações diferenciais de primeira ordem. Existe uma ambiguidade não-trivial (que não se reduz a uma derivada total) na definição da função de Lagrange para os sistemas de equações de primeira ordem. Apresentamos uma descrição completa desta ambiguidade. O esquema proposto é aplicado para a quantização da teoria quadrática geral. Também foi construida a quantização do oscilador harmônico amortecido e da carga elétrica com radiação. No contexto da MQNC elaboramos uma formulação da integral de trajetória da MQNC relativística e construímos a generalização não-comutativa da ação da super-partícula. A quantização da ação proposta fornece as equações de Klein-Gordon e de Dirac nas teorias de campo não-comutativas. No contexto do terceiro problema desenvolvemos uma abordagem para a quantização por deformação no plano real com uma estrutura de Poisson arbitrária baseada no ordenamento simétrico dos produtos dos operadores. É formulado um procedimento iterativo simples e efetivo para a construção do produto estrela. Este procedimento nos permitiu calcular o produto estrela em ordens altas (em terceira e quarta ordens), algo que foi feito pela primeira vez. Exceto por uma análise da cohomologia, que não consideramos no artigo, o método proposto dá uma descrição explicita, na linguagem matemática usual da física, do produto estrela. / We present here three interrelated problems: quantization of non-Lagrangian theories, noncommutative quantum mechanics (NCQM) and a constructions of the star product trough the the Weyl ordering. In the context of the first problem an approach to the canonical quantization of systems with non-Lagrangian equations of motion is proposed. We construct an action principle for an equivalent first-order equations of motion. There exists an ambiguity (not reducible to a total time derivative) in associating a Lagrange function with the given set of equations. We give a complete description of this ambiguity. The proposed scheme is applied to quantization of a general quadratic theory. Also the quantization of a damped oscillator and a radiating point-like charge is constructed. In the context of NCQM we propose a path integral formulation of relativistic NCQM and construct a noncommutative generalization of superparticle action. After quantization, the proposed action reproduces the Klein-Gordon and Dirac equations in the noncommutative field theories. In the context of the third problem we develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which based on Weyl symmetrically ordered operator products. A simple and effective iterative procedure of the construction of star products is formulated. This procedure allowed us to calculate the third and the fourth order star products. Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.
8

Quantização de sistemas não-Lagrangianos e mecânica quântica não-comutativa / Quantization of non-Lagrangian systems and noncommutative quantum mechanics

Vladislav Kupriyanov 23 March 2009 (has links)
Nesta tese apresentamos três problemas interligados: a quântização de teorias não-Lagrangianos, a mecânica quântica não-comutativa (MQNC) e a construção do produto estrela atravéz do ordenamento de Weyl. No contexto do primeiro problema foi elaborada uma abordagem da quantização canônica de sistemas com as equações de movimento não-Lagrangianas. Construímos um princípio da ação mínima para um sistema equivalente das equações diferenciais de primeira ordem. Existe uma ambiguidade não-trivial (que não se reduz a uma derivada total) na definição da função de Lagrange para os sistemas de equações de primeira ordem. Apresentamos uma descrição completa desta ambiguidade. O esquema proposto é aplicado para a quantização da teoria quadrática geral. Também foi construida a quantização do oscilador harmônico amortecido e da carga elétrica com radiação. No contexto da MQNC elaboramos uma formulação da integral de trajetória da MQNC relativística e construímos a generalização não-comutativa da ação da super-partícula. A quantização da ação proposta fornece as equações de Klein-Gordon e de Dirac nas teorias de campo não-comutativas. No contexto do terceiro problema desenvolvemos uma abordagem para a quantização por deformação no plano real com uma estrutura de Poisson arbitrária baseada no ordenamento simétrico dos produtos dos operadores. É formulado um procedimento iterativo simples e efetivo para a construção do produto estrela. Este procedimento nos permitiu calcular o produto estrela em ordens altas (em terceira e quarta ordens), algo que foi feito pela primeira vez. Exceto por uma análise da cohomologia, que não consideramos no artigo, o método proposto dá uma descrição explicita, na linguagem matemática usual da física, do produto estrela. / We present here three interrelated problems: quantization of non-Lagrangian theories, noncommutative quantum mechanics (NCQM) and a constructions of the star product trough the the Weyl ordering. In the context of the first problem an approach to the canonical quantization of systems with non-Lagrangian equations of motion is proposed. We construct an action principle for an equivalent first-order equations of motion. There exists an ambiguity (not reducible to a total time derivative) in associating a Lagrange function with the given set of equations. We give a complete description of this ambiguity. The proposed scheme is applied to quantization of a general quadratic theory. Also the quantization of a damped oscillator and a radiating point-like charge is constructed. In the context of NCQM we propose a path integral formulation of relativistic NCQM and construct a noncommutative generalization of superparticle action. After quantization, the proposed action reproduces the Klein-Gordon and Dirac equations in the noncommutative field theories. In the context of the third problem we develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which based on Weyl symmetrically ordered operator products. A simple and effective iterative procedure of the construction of star products is formulated. This procedure allowed us to calculate the third and the fourth order star products. Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.
9

Tangent and Cotangent Bundles, Automorphism Groups and Representations of Lie Groups

Hindeleh, Firas Y. 06 September 2006 (has links)
No description available.

Page generated in 0.0455 seconds