• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 2
  • Tagged with
  • 25
  • 25
  • 25
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Error control in nonstiff initial value solvers

Higham, D. J. January 1988 (has links)
No description available.
2

Hybrid Runge-Kutta and quasi-Newton methods for unconstrained nonlinear optimization

Mohr, Darin Griffin 01 January 2011 (has links)
Finding a local minimizer in unconstrained nonlinear optimization and a fixed point of a gradient system of ordinary differential equations (ODEs) are two closely related problems. Quasi-Newton algorithms are widely used in unconstrained nonlinear optimization while Runge-Kutta methods are widely used for the numerical integration of ODEs. In this thesis, hybrid algorithms combining low-order implicit Runge-Kutta methods for gradient systems and quasi-Newton type updates of the Jacobian matrix such as the BFGS update are considered. These hybrid algorithms numerically approximate the gradient flow, but the exact Jacobian matrix is not used to solve the nonlinear system at each step. Instead, a quasi-Newton matrix is used to approximate the Jacobian matrix and matrix-vector multiplications are performed in a limited memory setting to reduce storage, computations, and the need to calculate Jacobian information. For hybrid algorithms based on Runge-Kutta methods of order at least two, a curve search is implemented instead of the standard line search used in quasi-Newton algorithms. Stepsize control techniques are also performed to control the stepsize associated with the underlying Runge-Kutta method. These hybrid algorithms are tested on a variety of test problems and their performance is compared with that of the limited memory BFGS algorithm.
3

Runge-Kutta methods for stochastic differential equations

Burrage, Pamela Marion Unknown Date (has links)
In this thesis, high order stochastic Runge-Kutta methods are developed for the numerical solution of (Stratonvich) stochastic differential equations and numerical results are presented. The problems associated with non-communativity of stochastic differential equation systems are addressed and stochastic Runge-Kutta methods particularly suited for such systems are derived. The thesis concludes with a discussion on various implementation issues, along with numerical results from variable stepsize implementation of a stochastic embedded pair of Runge-Kutta methods.
4

Very High-Order A-stable Stiffly Accurate Diagonally Implicit Runge-Kutta Methods with Error Estimators

Alamri, Yousef 24 July 2023 (has links)
A numerical search approach is used to design high-order diagonally implicit Runge-Kutta (DIRK) schemes equipped with embedded error estimators, some of which have identical diagonal elements (SDIRK) and explicit first stage (ESDIRK). In each of these classes, we present new A-stable schemes of orders six (the highest order of previously known A-stable DIRK-type schemes) up to order eight. For each order, we include one scheme that is only A-stable as well as one that is stiffly accurate and/or L-stable. The latter require more stages but give better results for highly stiff problems and differential-algebraic equations (DAEs). The development of the eighth-order schemes requires, in addition to imposing A-stability, finding highly accurate numerical solutions for a system of 200 equations in over 100 variables, which is accomplished via a combination of global and local optimization strategies. The accuracy, stability, and efficiency of the schemes are demonstrated on diverse problems.
5

Numerical methods for simulation of electrical activity in the myocardial tissue

Dean, Ryan Christopher 13 April 2009
Mathematical models of electric activity in cardiac tissue are becoming increasingly powerful tools in the study of cardiac arrhythmias. Considered here are mathematical models based on ordinary differential equations (ODEs) and partial differential equations (PDEs) that describe the behaviour of this electrical activity. Generating an efficient numerical solution of these models is a challenging task, and in fact the physiological accuracy of tissue-scale models is often limited by the efficiency of the numerical solution process. In this thesis, we discuss two sets of experiments that test ideas for making the numerical solution process more efficient. In the first set of experiments, we examine the numerical solution of four single cell cardiac electrophysiological models, which consist solely of ODEs. We study the efficiency of using implicit-explicit Runge-Kutta (IMEX-RK) splitting methods to solve these models. We find that variable step-size implementations of IMEX-RK methods (ARK3 and ARK5) that take advantage of Jacobian structure clearly outperform most methods commonly used in practice for two of the models, and they outperform all methods commonly used in practice for the remaining models. In the second set of experiments, we examine the solution of the bidomain model, a model consisting of both ODEs and PDEs that are typically solved separately. We focus these experiments on numerical methods for the solution of the two PDEs in the bidomain model. The most popular method for this task, the Crank-Nicolson method, produces unphysical oscillations; we propose a method based on a second-order L-stable singly diagonally implicit Runge-Kutta (SDIRK) method to eliminate these oscillations.<p> We find that although the SDIRK method is able to eliminate these unphysical oscillations, it is only more efficient for crude error tolerances.
6

Numerical methods for simulation of electrical activity in the myocardial tissue

Dean, Ryan Christopher 13 April 2009 (has links)
Mathematical models of electric activity in cardiac tissue are becoming increasingly powerful tools in the study of cardiac arrhythmias. Considered here are mathematical models based on ordinary differential equations (ODEs) and partial differential equations (PDEs) that describe the behaviour of this electrical activity. Generating an efficient numerical solution of these models is a challenging task, and in fact the physiological accuracy of tissue-scale models is often limited by the efficiency of the numerical solution process. In this thesis, we discuss two sets of experiments that test ideas for making the numerical solution process more efficient. In the first set of experiments, we examine the numerical solution of four single cell cardiac electrophysiological models, which consist solely of ODEs. We study the efficiency of using implicit-explicit Runge-Kutta (IMEX-RK) splitting methods to solve these models. We find that variable step-size implementations of IMEX-RK methods (ARK3 and ARK5) that take advantage of Jacobian structure clearly outperform most methods commonly used in practice for two of the models, and they outperform all methods commonly used in practice for the remaining models. In the second set of experiments, we examine the solution of the bidomain model, a model consisting of both ODEs and PDEs that are typically solved separately. We focus these experiments on numerical methods for the solution of the two PDEs in the bidomain model. The most popular method for this task, the Crank-Nicolson method, produces unphysical oscillations; we propose a method based on a second-order L-stable singly diagonally implicit Runge-Kutta (SDIRK) method to eliminate these oscillations.<p> We find that although the SDIRK method is able to eliminate these unphysical oscillations, it is only more efficient for crude error tolerances.
7

A Study of 2-Additive Splitting for Solving Advection-Diffusion-Reaction Equations

2013 December 1900 (has links)
An initial-value problem consists of an ordinary differential equation subject to an initial condition. The right-hand side of the differential equation can be interpreted as additively split when it is comprised of the sum of two or more contributing factors. For instance, the right-hand sides of initial-value problems derived from advection-diffusion-reaction equations are comprised of the sum of terms emanating from three distinct physical processes: advection, diffusion, and reaction. In some cases, solutions to initial-value problems can be calculated analytically, but when an analytic solution is unknown or nonexistent, methods of numerical integration are used to calculate solutions. The runtime performance of numerical methods is problem dependent; therefore, one must choose an appropriate numerical method to achieve favourable performance, according to characteristics of the problem. Additive methods of numerical integration apply distinct methods to the distinct contributing factors of an additively split problem. Treating the contributing factors with methods that are known to perform well on them individually has the potential to yield an additive method that outperforms single methods applied to the entire (unsplit) problem. Splittings of the right-hand side can be physics-based, i.e., based on physical characteristics of the problem, such as advection, diffusion, or reaction terms. Splittings can also be based on linearization, called Jacobian splitting in this thesis, where the linearized part of the problem is treated with one method and the rest of the problem is treated with another. A comparison of these splitting techniques is performed by applying a set of additive methods to a test suite of problems. Many common non-additive methods are also included to serve as a performance baseline. To perform this numerical study, a problem-solving environment was developed to evaluate permutations of problems, methods, and their associated parameters. The test suite is comprised of several distinct advection-diffusion-reaction equations that have been chosen to represent a wide range of common problem characteristics. When solving split problems in the test suite, it is found that additive Runge–Kutta methods of orders three, four, and five using Jacobian splitting generally outperform those same methods using physics-based splitting. These results provide evidence that Jacobian splitting is an effective approach when solving such initial-value problems in practice.
8

Modified iterative Runge-Kutta-type methods for nonlinear ill-posed problems

Pornsawad, Pornsarp, Böckmann, Christine January 2014 (has links)
This work is devoted to the convergence analysis of a modified Runge-Kutta-type iterative regularization method for solving nonlinear ill-posed problems under a priori and a posteriori stopping rules. The convergence rate results of the proposed method can be obtained under Hölder-type source-wise condition if the Fréchet derivative is properly scaled and locally Lipschitz continuous. Numerical results are achieved by using the Levenberg-Marquardt and Radau methods.
9

Comparison of numerical methods for solving a system of ordinary differential equations: accuracy, stability and efficiency

Amir Taher, Kolar January 2020 (has links)
In this thesis, we compute approximate solutions to initial value problems of first-order linear ODEs using five explicit Runge-Kutta methods, namely the forward Euler method, Heun's method, RK4, RK5, and RK8. This thesis aims to compare the accuracy, stability, and efficiency properties of the five explicit Runge-Kutta methods. For accuracy, we carry out a convergence study to verify the convergence rate of the five explicit Runge-Kutta methods for solving a first-order linear ODE. For stability, we analyze the stability of the five explicit Runge-Kutta methods for solving a linear test equation. For efficiency, we carry out an efficiency study to compare the efficiency of the five explicit Runge-Kutta methods for solving a system of first-order linear ODEs, which is the main focus of this thesis. This system of first-order linear ODEs is a semi-discretization of a two-dimensional wave equation.
10

Generalized additive Runge-Kutta methods for stiff odes

Tanner, Gregory Mark 01 August 2018 (has links)
In many applications, ordinary differential equations can be additively partitioned \[y'=f(y)=\sum_{m=1}^{N}\f{}{m}(y).] It can be advantageous to discriminate between the different parts of the right-hand side according to stiffness, nonlinearity, evaluation cost, etc. In 2015, Sandu and G\"{u}nther \cite{sandu2015gark} introduced Generalized Additive Runge-Kutta (GARK) methods which are given by \begin{eqnarray*} Y_{i}^{\{q\}} & = & y_{n}+h\sum_{m=1}^{N}\sum_{j=1}^{s^{\{m\}}}a_{i,j}^{\{q,m\}}f^{\{m\}}\left(Y_{j}^{\{m\}}\right)\\ & & \text{for } i=1,\dots,s^{\{q\}},\,q=1,\dots,N\\ y_{n+1} & = & y_{n}+h\sum_{m=1}^{N}\sum_{j=1}^{s^{\{m\}}}b_{j}^{\{m\}}f^{\{m\}}\left(Y_{j}^{\{m\}}\right)\end{eqnarray*} with the corresponding generalized Butcher tableau \[\begin{array}{c|ccc} \c{}{1} & \A{1,1} & \cdots & \A{1,N}\\\vdots & \vdots & \ddots & \vdots\\ \c{}{N} & \A{N,1} & \cdots & \A{N,N}\\\hline & \b{}{1} & \cdots & \b{}{N}\end{array}\] The diagonal blocks $\left(\A{q,q},\b{}{q},\c{}{q}\right)$ can be chosen for example from standard Runge-Kutta methods, and the off-diagonal blocks $\A{q,m},\:q\neq m,$ act as coupling coefficients between the underlying methods. The case when $N=2$ and both diagonal blocks are implicit methods (IMIM) is examined. This thesis presents order conditions and simplifying assumptions that can be used to choose the off-diagonal coupling blocks for IMIM methods. Error analysis is performed for stiff problems of the form \begin{eqnarray*}\dot{y} & = & f(y,z)\\ \epsilon\dot{z} & = & g(y,z)\end{eqnarray*} with small stiffness parameter $\epsilon.$ As $\epsilon\to 0,$ the problem reduces to an index 1 differential algebraic equation provided $g_{z}(y,z)$ is invertible in a neighborhood of the solution. A tree theory is developed for IMIM methods applied to the reduced problem. Numerical results will be presented for several IMIM methods applied to the Van der Pol equation.

Page generated in 0.0339 seconds