Return to search

On the existence of distributional potentials

We present proofs for the existence of distributional potentials ๐น โˆˆ ๎ˆฐโ€ฒ(ฮฉ) for distributional vector fields๐บ โˆˆ ๎ˆฐโ€ฒ(ฮฉ)๐‘›, that is, grad ๐น = ๐บ, where ฮฉ is an open subset of โ„๐‘›. The hypothesis in these proofs is the compatibility condition ๐œ•๐‘—๐บ๐‘˜ = ๐œ•๐‘˜๐บ๐‘— for all ๐‘—, ๐‘˜ โˆˆ {1, โ€ฆ , ๐‘›}, if ฮฉ is simply connected, and a stronger condition in the general case. A key tool in our treatment is the Bogovskiห˜ฤฑ formula, assigning vector fields ๐‘ฃ โˆˆ ๎ˆฐ(ฮฉ)๐‘› satisfying div ๐‘ฃ = ๐œ‘ to functions ๐œ‘ โˆˆ ๎ˆฐ(ฮฉ) with โˆซ ๐œ‘(๐‘ฅ) d๐‘ฅ = 0. The results are applied to properties of Hilbert spaces of functions occurring in the treatment of the Stokes operator and the Navierโ€“Stokes equations.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:90116
Date19 April 2024
CreatorsVoigt, Jรผrgen
PublisherWiley-VCH
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1522-2616, 10.1002/mana.202100220

Page generated in 0.0075 seconds