We present proofs for the existence of distributional potentials ๐น โ ๎ฐโฒ(ฮฉ) for distributional vector fields๐บ โ ๎ฐโฒ(ฮฉ)๐, that is, grad ๐น = ๐บ, where ฮฉ is an open subset of โ๐. The hypothesis in these proofs is the compatibility condition ๐๐๐บ๐ = ๐๐๐บ๐ for all ๐, ๐ โ {1, โฆ , ๐}, if ฮฉ is simply connected, and a stronger condition in the general case. A key tool in our treatment is the Bogovskiหฤฑ formula, assigning vector fields ๐ฃ โ ๎ฐ(ฮฉ)๐ satisfying div ๐ฃ = ๐ to functions ๐ โ ๎ฐ(ฮฉ) with โซ ๐(๐ฅ) d๐ฅ = 0. The results are applied to properties of Hilbert spaces of functions occurring in the treatment of the Stokes operator and the NavierโStokes equations.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:90116 |
Date | 19 April 2024 |
Creators | Voigt, Jรผrgen |
Publisher | Wiley-VCH |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 1522-2616, 10.1002/mana.202100220 |
Page generated in 0.0075 seconds