Return to search

Investigation of Structural Properties and their Relation to the Phase Transitions in Shape Memory Heusler Compounds

The present thesis is devoted to the investigation of modulated structures as well as the direct measurement of magnetocaloric effect (MCE) in Ni-Mn based magnetic shape memory (MSM) Heusler compounds in pulsed magnetic fields after analyzing isothermal entropy data taken in static magnetic fields. The emphasis is on the modulated structure of MSM Heusler compounds because of lower twinning stress which facilitates the easy transformation from austenite to martensite structure. Synchrotron x-ray powder diffraction (SXRPD) was carried out to study the modulated structure and NPD for antisite disorder as Ni and Mn have easily the same atomic scattering factor. Direct measurement of the adiabatic temperature change ΔTad was done in pulsed magnetic fields, because of fast response of ~10 to 100 ms to the sample temperature on magnetic field, providing adiabatic conditions. It also gives an opportunity of very high magnetic fields up to 70 T because of short pulse duration during the measurement.
The modulated structure has been studied for the off-stoichiometric Ni2Mn1.4In0.6 and Ni1.9Pt0.1MnGa MSM Heusler compounds from SXRPD and NPD. Ni2Mn1.4In0.6 exhibits martensitic transition at TM ~ 295 K and Curie temperature TC ~ 315 K. Rietveld refinement reveals uniform atomic displacement in the modulated structure of martensite phase and the absence of premartensite phase and phason broadening of the satellite peaks which was further confirmed by HRTEM study. Therefore, the structural modulation in Ni2Mn1.4In0.6 can be successfully explained in term of the adaptive phase model. Whereas, Ni1.9Pt0.1MnGa shows the premartensite phase in addition to the martensite and austenite phases and follows the soft phonon model. The temperature dependent ac-susceptibility shows the change in slope at different
temperatures 365, 265, 230 and 220 K corresponding to the Curie temperature TC, first premartensite T1, second premartensite T2 and martensite temperature TM, respectively. Temperature-dependent high resolution SXRPD data analysis shows first, a nearly 3M modulated premartensite phase with an average cubic-like feature i.e. negligible Bain distortion of the elementary L21 unit cell results from the austenite phase. This phase then undergoes an isostructural phase transition 3M like premartensite phase with robust Bain distortion in the temperature range from 220 to 195 K. Below 195 K, the martensite phase appears which results from the larger Bain-distorted premartensite phase.
In this work, the magnetocaloric properties of Ni2.2Mn0.8Ga and Ni1.8Mn1.8In0.4 magnetic shape memory (MSM) Heusler compounds were studied. Ni2.2Mn0.8Ga exhibits the reversible conventional MCE, measured from isothermal entropy change ΔSM and adiabatic temperature change ΔTad because of the geometric compatibility condition (GCC) for cubic austenite phase to tetragonal martensite phase as a consequence of low thermal hysteresis of the martensite phase transition. The reversible MCE has been confirmed by applying more than one pulse in the hysteresis region at 317 K. Ni1.8Mn1.8In0.4 possess improved reversible behavior of inverse MCE due to the closely satisfying of GCC from cubic austenite to modulated monoclinic martensite structure. The maximum value of ΔSM has been found to the same for both heating and cooling curves measured from isothermal magnetization M(T) curves until a magnetic field of 5 T. The adiabatic temperature change ΔTad results in a value of -10 K by applying a magnetic field of 20 T in a pulsed magnetic field. Furthermore, reversible magnetostriction of 0.3% was observed near the first-order martensite phase transition temperatures 265, 270 and 280 K.
A reduction of thermal hysteresis has been found in MSM Heusler compounds Ni2Mn1.4In0.6 and Ni1.8Co0.2Mn1.4In0.6 with the application of hydrostatic pressure followed by GCC from pressure dependent x-ray diffraction in both austenite and martensite phase. By increasing pressure, the lattice parameters of both phases change in such a way that they increasingly satisfy the GCC. The approach of GCC for different kind of martensite structures (tetragonal, orthorhombic and monoclinic) will help to design new MSM Heusler compounds taking advantage of first-order martensite phase transition.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:33553
Date18 March 2019
CreatorsDevi, Parul
ContributorsFelser, Claudia, Goennenwein, Sebastian T. B., Inosov, Dmytro S., Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds