Technological evolution and mass production is impacting the Earth daily due to global warming caused by greenhouse gas emissions, where the biggest factor is the emission of carbon dioxide mostly caused by the burning of fossil fuel and industrial processes. Therefore, alternatives for substituting the use of fossil fuel in industries are extremely important. This thesis project investigates the method of using plasma technology using a plasma burner which is electrically generated and could be an ideal solution for industrial metallurgical, chemical and mechanical processes due to its unique characteristics such as high energy densities, extremely high temperatures, rapid heating of surfaces and melting materials with a small installation size. Using the software COMSOL Multiphysics, a 2D model geometry is set up to simulate and investigate the behavior of the plasma burner by varying different parameters to improve the performance of the plasma burner. The results are based on simulations and no experiments were performed. However, we visited RISE ETC to observe and learn about the plasma burner model. At last, a geometry investigation was done by calculating the thermal efficiency to designate the most efficient geometry.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-87161 |
Date | January 2021 |
Creators | Colmenares, Julian, Ghazi, Diyar |
Publisher | Luleå tekniska universitet, Rymdteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds