<p>The detection of MWIR (mid wavelength infrared radiation) is the important for industrial, biomedical and military applications.desirable for the radiation detector to operate in the middle wavelength IR (MWIR) band corresponding to a wavelength band ranging from about 3 microns to about 5 microns.Such MWIR detectors allow forobjects having a similar thermal signature. In addition, MWIR detectors may be used in low power applications such as in night vision for surveillance of personnel.</p><p>Now a day commercially available uncooled IR sensors operating in MWIR region (2 – 5 μm) use microbolometric detectors which are inherently slow. The novel detector of InAs/GaSb quantum well structures overcomes this limitation. However, third-generation high-performance IR FPAs are already an attractive proposition to the IR system designer. They covered such as multicolour (at least two, and maybe more different spectral bands) with the possibility of simultaneous detection in both space and time, and ever larger sizes of, say, 2000 × 2000, and operating at higher temperatures, even to room temperature, for all cut-off wavelengths.These hetero structures have a type-II band alignment such that the conduction band of InAs layer is lower than the valence band of GaSb layer. The effective bandgap of thesestructures can be adjusted from 0.4 eV to values below 0.1 eV by varying the thickness of constituent layers leading to an enormous range of detector cutoff wavelengths (3-20 This work is focused on the various key characteristics the optical (responsivity and detectivity) and electrical (surface leakage & dark current) of infrared detector and proof of concept is demonstrated on infrared P-I-N photodiodes based on InAs/GaSb superlattices with ~8.5 μm cutoff wavelength and bandgap energy ~150 meV operating at 78 K where supression of surface leakage currents is observed. In certain military applications, it isthermal imaging of airplanes, artillery tanks and otherμm).</p> / Nice research work at Halmstad University
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:hh-3848 |
Date | January 2010 |
Creators | Mahajumi, Abu Syed |
Publisher | IDE, Microelectronics and Photonics |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Relation | Forskning i Halmstad, 1400-5409 |
Page generated in 0.002 seconds