La thèse est portée essentiellement sur la stabilisation et la contrôlabilité de deux équations des ondes moyennant un seul contrôle agissant sur le bord du domaine. Dans le cas du contrôle dynamique, le contrôle est introduit dans le système par une équation différentielle agissant sur le bord. C'est en effet un système hybride. Le contrôle peut être aussi applique directement sur le bord d'une équation, c'est le cas du contrôle indirecte mais non borne. La nature du système ainsi coupledépend du couplage des équations, et ceci donne divers résultats par la stabilisation (exponentielle et polynomiale) et la contrôlabilité exacte (espace contrôlable). Des nouvelles inégalités d'énergie permettent de mettre en oeuvre la Méthode fréquentielle et la Méthode d'Unicité de Hilbert. / This thesis is concerned with the stabilization and the exact controllability of two wave equations by means of only one control acting on the boundary of the domain. In the case of dynamic control, the control is introduced into the system by differential equation acting on the boundary. It is indeed a hybrid system. The control can be also applied directly on the boundary of one of the equations. In this case, the control is indirect but unbounded. The behavior of the obtained system depends on theways of coupling. Various results are established for the stabilization (exponential or polynomial) and the exact controllability (controllable space of initial data). A new inequality of energy allows to apply the Frequency Method and the Hilbert Uniqueness Method.
Identifer | oai:union.ndltd.org:theses.fr/2013STRAD008 |
Date | 18 January 2013 |
Creators | Toufayli, Laila |
Contributors | Strasbourg, Rao, Bopeng, Wehbe, Ali |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds