Return to search

Matrizes operacionais e formalismo coadjunto em equações diferenciais fracionais. / Operational matrices and coadjoint formalism in fractional differential equations.

O método das matrizes operacionais é expandido para o corpo complexo a ordens arbitrárias pela abordagem de Riemann-Liouville e Caputo com ênfase nas séries de Fourier complexas. Elabora-se uma adaptação do formalismo bra-ket de Dirac à linguagem tensorial no espaço de Hilbert de funções com expansões finitas para uso específico na teoria de equações diferenciais e matrizes operacionais, denominado \\Formalismo Coadjunto\". Estende-se o tratamento aos operadores fracionais de Weyl para períodos genéricos a fim de determinar as matrizes operacionais de derivação e integração de ordem arbitrária na base complexa de Fourier. Introduz-se um novo método de resolução de equações diferenciais ordinárias lineares e fracionais não-homogêneas, denominado \\Modelagem Operacional\", que permite a obtenção de soluções de equações de alta ordem com grande precisão sem a necessidade de imposição de condições iniciais ou de contorno. O método apresentado é aperfeiçoado por meio de um novo tipo de expansão, que denominamos \"Séries Associadas de Fourier\", a qual apresenta convergência mais rápida que a série de Fourier original numa restrição de domínio, possibilitando soluções de EDOs e EDFs de alta ordem com maior precis~ao e ampliando a esfera de casos passíveis de resolução. / Operational matrices method is expanded to complex field and arbitrary orders by using the Riemann-Liouville and Caputo approach with emphasis on complex Fourier series. Dirac\'s bra-ket notation is associated to tensor procedures in Hilbert spaces for finite function expansions to be applied specifically to dfferential equations and operational matrices, being called \\Coadjoint Formalism\". This treatment is extended to Weyl fractional operators for generic periods in order to establish the integral and derivative operational matrices of fractional order to complex Fourier basis. A new method to solve linear non-homogeneous ODEs and FDEs, called \\Operational Modelling\"is introduced. It yields high precision solutions on high order dfferential equations without assumption of boundary or initial conditions. The presented method is improved by a new kind of function expansion, called \\Fourier Associated Series\", which yields a faster convergence than original Fourier in a restrict domain, enabling to obtain solutions of high order ODEs and FDEs with excellent precision and broadening the set of solvable equations.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-25072016-081620
Date29 September 2015
CreatorsWilliam Alexandre Labecca de Castro
ContributorsJosé Roberto Castilho Piqueira, Jose Augusto Penteado Aranha, Jose Manoel Balthazar, Elbert Einstein Nehrer Macau, Clodoaldo Grotta Ragazzo
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds