La géométrie fractale, développée par Mandelbrot dans les années 70, a connu un essor considérable ces 20 dernières années. Dans cette thèse, je m'intéresse à la génération de signaux dits fractals et multifractals. J'étudie en particulier 2 modèles, dont leur point commun est leur structure d'arbre de branchement sous jacente.<br />Le premier modèle est une généralisation des Systèmes de fonctions Itérés ou IFS, introduits par Hutchinson dans les années 80. Les IFS constituent un moyen simple et efficace pour produire des ensembles et des processus fractals en itérant un nombre fixed d'opérateurs. L'idée est d'autoriser un nombre aléatoire d'opérateurs aléatoires à chaque itération de l'algorithme. Nous donnons des conditions simples et faciles à vérifier sous lesquelles l'IFS admet un point fixe. Quelques propriétés du point fixe sont également étudiées. Le deuxième modèle, que nous appellons Multifractal Embedded Branching Process (MEBP), s'obtient à l'aide d'un changement de temps multifractal d'un processus à invariance d'échelle discrète, le processus EBP Canonique (CEBP). Nous donnons un algorithm efficace de simulation "on-line" de ces processus, permettant de générer X(n + 1) à partir de X(n) en O(log n) opérations. Nous obtenons également un borne supérieure pour le spectre multifractal du changement de temps et confirmons les résultats théoriques à l'aide de simulations. Les mouvements Browniens en temps multifractal sont des cas particuliers des processus MEBP, ce qui suggère une application potentielle des processus MEBP en finance. Enfin, nous proposons d'imiter un mouvement Brownien fractionnaire à l'aide d'un processus MEBP.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00353827 |
Date | 12 January 2009 |
Creators | Decrouez, Geoffrey |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0029 seconds