Return to search

évaluation du risque sismique par approches neuronales / a framework for seismic risk assessment based on artificial neural networks

L'étude probabiliste de sûreté (EPS) parasismique est l'une des méthodologies les plus utiliséespour évaluer et assurer la performance des infrastructures critiques, telles que les centrales nucléaires,sous excitations sismiques. La thèse discute sur les aspects suivants: (i) Construction de méta-modèlesavec les réseaux de neurones pour construire les relations entre les intensités sismiques et les paramètresde demande des structures, afin d'accélérer l'analyse de fragilité. L'incertitude liée à la substitution desmodèles des éléments finis par les réseaux de neurones est étudiée. (ii) Proposition d'une méthodologiebayésienne avec réseaux de neurones adaptatifs, afin de prendre en compte les différentes sourcesd'information, y compris les résultats des simulations numériques, les valeurs de référence fournies dansla littérature et les évaluations post-sismiques, dans le calcul de courbes de fragilité. (iii) Calcul des loisd'atténuation avec les réseaux de neurones. Les incertitudes épistémiques des paramètres d'entrée de loisd'atténuation, tels que la magnitude et la vitesse moyenne des ondes de cisaillement de trente mètres, sontprises en compte dans la méthodologie développée. (iv) Calcul du taux de défaillance annuel en combinantles résultats des analyses de fragilité et de l'aléa sismique. Les courbes de fragilité sont déterminées parle réseau de neurones adaptatif, tandis que les courbes d'aléa sont obtenues à partir des lois d'atténuationconstruites avec les réseaux de neurones. Les méthodologies proposées sont appliquées à plusieurs casindustriels, tels que le benchmark KARISMA et le modèle SMART. / Seismic probabilistic risk assessment (SPRA) is one of the most widely used methodologiesto assess and to ensure the performance of critical infrastructures, such as nuclear power plants (NPPs),faced with earthquake events. SPRA adopts a probabilistic approach to estimate the frequency ofoccurrence of severe consequences of NPPs under seismic conditions. The thesis provides discussionson the following aspects: (i) Construction of meta-models with ANNs to build the relations betweenseismic IMs and engineering demand parameters of the structures, for the purpose of accelerating thefragility analysis. The uncertainty related to the substitution of FEMs models by ANNs is investigated.(ii) Proposal of a Bayesian-based framework with adaptive ANNs, to take into account different sourcesof information, including numerical simulation results, reference values provided in the literature anddamage data obtained from post-earthquake observations, in the fragility analysis. (iii) Computation ofGMPEs with ANNs. The epistemic uncertainties of the GMPE input parameters, such as the magnitudeand the averaged thirty-meter shear wave velocity, are taken into account in the developed methodology.(iv) Calculation of the annual failure rate by combining results from the fragility and hazard analyses.The fragility curves are determined by the adaptive ANN, whereas the hazard curves are obtained fromthe GMPEs calibrated with ANNs. The proposed methodologies are applied to various industrial casestudies, such as the KARISMA benchmark and the SMART model.

Identiferoai:union.ndltd.org:theses.fr/2018SACLC089
Date27 November 2018
CreatorsWang, Zhiyi
ContributorsUniversité Paris-Saclay (ComUE), Zio, Enrico
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds