Return to search

Experimental analysis of the efficiency of carbon fiber anchors applied over CFRP to firebrick bonded joints

In these recent years, the strengthening of masonry building has known a massive use of CFRP sheets. Those composite materials glued on the elements to reinforce are exposed to prematurely debonding crisis due to a tension load which is much smaller than the tensile strength of the CFRP. A way to upgrade failure load of CFRP-to-support bonded joint is to reinforce the cohesion between the fibers and the support by the use of mechanicals anchors built with the same fibers of the composite and fastened in the support like "nails". Research on the use of anchors for masonry supports has been limited and, in this framework, there are no experimental analyses related to the design and the placement of fiber anchors. The aim of this thesis is to provide experimental data to quantify the efficiency of the carbon fiber anchors applied on a reinforced fire brick. This is a ground work to study CFRP to masonry bonded joint fastened by fiber "nails". Specifically, the analysis of the displacement and the strain fields of the reinforced surface have been realized by means of Digital Image Correlation (DIC), an optical appealing method never used to study a FRP to support bonded joint fastened by FRP anchor. The research demonstrates that the use of the CFRP anchor increases the resistance and the ductility of the reinforcements. The latter are important to augment the mechanical features of the structural members and, especially, to increase the safety of people during earthquakes by avoiding the brittle collapse of the strengthened elements. The digital image correlation has been a good tool for the strain field analysis; strengths and weaknesses of this method have been evaluated

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00861023
Date21 March 2013
CreatorsCaggegi, Carmelo, Caggegi, Carmelo
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0017 seconds