• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 7
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization for Fuel Cells/Fuel Cell Stacks Using Combined Methods---CFD Modeling Analysis, and Experiments

Liu, Hong January 2013 (has links)
Fuel cells are one of most environmental friendly energy sources; they have many advantages and may be used in many applications from portable electronic devices to automotive components. Proton exchange membrane (PEM) fuel cells are one of most reliable fuel cells and have advantage such as rapid-startup and ease of operation. This dissertation focuses on PEM fuel cell stack optimization based on operation experimental research and numerical modeling study. This dissertation presents three major research activities and the obtained results by the Ph.D candidate. A novel stack architecture design is introduced in order to decrease mal-distribution and non-uniform output performance between individual cells in order to improve the stack performance. Novel stack architecture includes a novel external bifurcation flow distribution delivery system. One major issue of uniform distribution of reactants inside individual fuel cells and between fuel cells in a fuel cell stack is solved by the novel stack architecture design. A novel method for uniform flow distribution was proposed, in which multiple levels of flow channel bifurcations were considered to uniformly distribute a flow into 2ⁿ flow channels at the final stage, after n levels of bifurcation. Some detailed parameters such as the flow channel length and width at each level of bifurcation as well as the curvature of the turning area of flow channels were particularly investigated. Computational fluid dynamics (CFD) based analysis and experimental tests were conducted to study the effect of the flow channel bifurcation structure and dimensions on the flow distribution uniformity. Optimization design and factors influential to the flow distribution uniformity were also delineated through the study. The flow field with the novel flow distribution was then considered to be used in a cooling plate for large fuel cell stacks and a possible method for cooling electronic devices. Details of the heat transfer performance, particularly the temperature distributions, on the heating surface as well as the pressure losses in the operation were obtained. In the second part of the research, experimental testing, analytical modeling, and CFD methods were employed for the study and optimization of flow fields and flow channel geometry in order to improve fuel cell performance. Based on the experimental results, a serpentine flow field is chosen for CFD and modeling analysis. Serpentine flow channel optimization is based on the parametrical study of many combinations of total channel width and rib ratio. Modeling analysis and in-house made computational code was used to optimize the dimensions of flow channels and channel walls. It is recommended that cell channel design should use a small total channel width and rib ratio. Proton exchange membrane fuel cells were fabricated based on the optimization results. Experimental tests were conducted and the results coincided with the numerical analysis; therefore, small total width and rib ratio design could significantly improve the fuel cell performance. Three dimensional (3D) CFD simulations for various PEM fuel cells were conducted to investigate information such as water and reactants distribution. The direct simulation results of current density distribution proclaim how the channel design influences the performance. The final section of research is stack bipolar plate flow field optimization. Optimized channel geometries are applied to the serpentine channel design for the stack. This serpentine channel design evolved to parallel-serpentine channel and symmetric serpentine channel design. Experimental tests of the stacks using the above flow fields are compared to one another and the results recommend use of the novel symmetric serpentine flow channel for stack bipolar design to achieve best performance.
2

Air induction noise investigation during turbocharger surge events in petrol engines

Pai, Ajith V. January 2015 (has links)
Turbocharging is used as a means to downsize petrol engines, thereby, producing more power for a lower engine size, when compared with a naturally aspirated engine. Due to the presence of a throttle valve in the intake system in petrol engines, flow is restricted at the outlet pipe of the compressor during low load engine operation. For example, during transient tip out tip in maneuvers. Hence, there is a chance of the turbocharger operating in near surge or surge conditions and, thus, generating surge noise. This Thesis describes an experimental and simulation method to predict and measure the turbocharger surge noise. Initially, experimental transient tip-in and tip-out maneuver was performed on a non turbocharged car with a petrol engine. The measured noise level in the intake manifold, at a low frequency of up to 1200 Hz, was analysed and was shown not to represent surge noise. Next, a one dimensional simulation method was applied to simulate the noise of the engine and this demonstrated an increase in the acoustic pressure level in the intake manifold during the tip in and tip out maneuver. However, a surge noise pattern was not observed in the analysis of acoustic pressure signals in the intake system using Short Time Fourier Transform (STFT). The simulation procedure was also used to inform the design of an experimental rig to recreate the surge noise under laboratory conditions. An experimental turbocharger noise rig, designed and built for this purpose, is explained in the Thesis. Important component parts likely to be involved in the surge noise generation such as the intake system, compressor, throttle body, compressor recirculation valve and measurement and control systems were integrated into the test rig. Background noise contributions from the electric motor, AC mains, supercharger pulley, throttle body, inverter fan, throttle body gearing and structural vibration of the supporting structure were identified from the analysed frequency components of the signals from surface microphone measurements taken at the intake system. This helped to clearly identify the surge noise frequency components (3250 Hz) in the STFT analysis. The fundamental mechanism of noise generation was identified using an analysis of the experimental results and a frequency calculation for vortex shedding and the radial acoustic resonances. One of the main conclusions of the Thesis is that the compressor recirculation valve (CRV) open or close position, the CRV delay time and the throttle position are major contributing factors to the cause of the surge noise. Another major conclusion is that the radial acoustic resonance may be a mechanism of surge noise generation. Finally, a passive solution to reduce the surge noise is proposed. A pipe with cross ribs is designed as a passive solution using the radial acoustic resonance calculation and the corresponding nodal patterns. This solution demonstrated a measured intake system noise reduction of up to 10dB under compressor surge conditions.
3

Estudo experimental de consolos de concreto com fibras moldados em etapas distintas dos pilares / Experimental research of reinforced fiber concrete corbels shaped in distinct stage to the column

Costa, Jônatas Barreto de Andrade 15 May 2009 (has links)
A produção industrial do consolo tradicional apresenta dificuldades devido à grande quantidade de armadura em um espaço pequeno. Além da armadura do tirante principal, normalmente se utilizam estribos verticais e horizontais. O presente estudo experimental propõe um consolo moldado em etapa anterior à do pilar, com a armadura e superfícies preparadas para a ligação posterior com o pilar, durante a concretagem deste elemento. O consolo dispõe somente da armadura do tirante principal e de fibras metálicas incorporadas à matriz de concreto, sem estribos verticais ou horizontais. Em alguns modelos foi utilizado um tipo de armadura de costura alternativo. As principais variáveis analisadas foram a taxa de armadura e o arranjo das barras dos tirantes. A adição de fibras ao consolo reduziu a fissuração na biela de compressão e aumentou a resistência à ruptura dos consolos em 8%, apresentando boa ductilidade, mesmo depois da máxima solicitação. Com o aumento da armadura do tirante no consolo com fibras, a resistência à ruptura foi 69% maior. Considerando o patamar de solicitação de serviço do consolo tradicional, os modelos moldados em etapas distintas apresentaram aberturas de fissuras na interface consolo-pilar 33% maiores, apesar de demorarem mais a aparecer. Entretanto, quando aumentada a taxa de armadura principal, os modelos moldados em etapas distintas demonstraram fissuras 23% menores que o consolo tradicional. / The industrial production of traditional corbel presents some difficulties due to the great quantity of reinforcement in a small space. Beyond the main bars, it is generally used vertical and horizontal stirrups. This experimental study proposes a corbel shaped in the prior stage to the column, with the reinforcement and surfaces prepared to the later connection with the column during the molding of it. The corbel has only the reinforcement of main bars and steel fibers incorporated to the concrete matrix, without vertical or horizontal stirrups. In some models were used a kind of alternative secondary reinforcement. The main variables analyzed were the reinforcement rate and the arrangement of the main bars. The addition of fibers to the corbel reduced the crack in the compressed diagonal and increased the resistance to rupture of corbels in 8%, presenting a reasonable ductility even after the maximum load. With the increase of reinforcement of main bars in the corbel with fibers, the resistance to rupture was 69% greater. Considering the baseline of service load of traditional corbel, models shaped in distinct stages presented crack openings 33% larger, in spite of taking a longer time to show up. However, when the rate of primary reinforcement was increased, the models shaped in distinct stages had cracks 23% smaller than the traditional corbel.
4

Estudo experimental de consolos de concreto com fibras moldados em etapas distintas dos pilares / Experimental research of reinforced fiber concrete corbels shaped in distinct stage to the column

Jônatas Barreto de Andrade Costa 15 May 2009 (has links)
A produção industrial do consolo tradicional apresenta dificuldades devido à grande quantidade de armadura em um espaço pequeno. Além da armadura do tirante principal, normalmente se utilizam estribos verticais e horizontais. O presente estudo experimental propõe um consolo moldado em etapa anterior à do pilar, com a armadura e superfícies preparadas para a ligação posterior com o pilar, durante a concretagem deste elemento. O consolo dispõe somente da armadura do tirante principal e de fibras metálicas incorporadas à matriz de concreto, sem estribos verticais ou horizontais. Em alguns modelos foi utilizado um tipo de armadura de costura alternativo. As principais variáveis analisadas foram a taxa de armadura e o arranjo das barras dos tirantes. A adição de fibras ao consolo reduziu a fissuração na biela de compressão e aumentou a resistência à ruptura dos consolos em 8%, apresentando boa ductilidade, mesmo depois da máxima solicitação. Com o aumento da armadura do tirante no consolo com fibras, a resistência à ruptura foi 69% maior. Considerando o patamar de solicitação de serviço do consolo tradicional, os modelos moldados em etapas distintas apresentaram aberturas de fissuras na interface consolo-pilar 33% maiores, apesar de demorarem mais a aparecer. Entretanto, quando aumentada a taxa de armadura principal, os modelos moldados em etapas distintas demonstraram fissuras 23% menores que o consolo tradicional. / The industrial production of traditional corbel presents some difficulties due to the great quantity of reinforcement in a small space. Beyond the main bars, it is generally used vertical and horizontal stirrups. This experimental study proposes a corbel shaped in the prior stage to the column, with the reinforcement and surfaces prepared to the later connection with the column during the molding of it. The corbel has only the reinforcement of main bars and steel fibers incorporated to the concrete matrix, without vertical or horizontal stirrups. In some models were used a kind of alternative secondary reinforcement. The main variables analyzed were the reinforcement rate and the arrangement of the main bars. The addition of fibers to the corbel reduced the crack in the compressed diagonal and increased the resistance to rupture of corbels in 8%, presenting a reasonable ductility even after the maximum load. With the increase of reinforcement of main bars in the corbel with fibers, the resistance to rupture was 69% greater. Considering the baseline of service load of traditional corbel, models shaped in distinct stages presented crack openings 33% larger, in spite of taking a longer time to show up. However, when the rate of primary reinforcement was increased, the models shaped in distinct stages had cracks 23% smaller than the traditional corbel.
5

Modélisation, conception et expérimentation d'un véhicule hybride léger pour usages urbains / Modeling, design and experimental test of an small urban hybrid electric vehicle

Loukakou Bounzeki Mbemba, Destiny Conscience Eland 21 December 2012 (has links)
La crise du pétrole et les contraintes écologiques obligent de nombreux constructeurs automobiles à développer des programmes de recherche importants dans le développement des véhicules électriques et hybrides électriques. Dans ce contexte, cette thèse a pour but de vérifier la faisabilité d’une chaine de traction hybride innovante consistant à partir d’unvéhicule thermique existant et à réduire la puissance du moteur thermique tout en ajoutant des moteurs intégrés dans les roues du train arrière. Ce travail a été réalisé dans le cadre d’un projet financé par l’ADEME et en collaboration notamment avec le constructeur automobile AIXAM-MEGA.Plus précisément, le travail de thèse a donc porté sur le dimensionnement des sources énergétiques, la modélisation énergétique et fonctionnelle du véhicule et enfin la réalisation et la caractérisation expérimentale du véhicule.Dans le premier chapitre, l’auteur développe une revue bibliographique relative aux véhicules hybrides électriques existants. Cela permet ensuite d’introduire le concept innovant de chaine de traction hybride décrit ci-dessus, reposant en quelque sorte sur un couplage par la route des puissances de propulsion thermiques et électriques.Dans le deuxième chapitre l’auteur aborde le dimensionnement des sources énergétiques en se focalisant sur les super-condensateurs. Il propose une approche analytique simple de calcul reposant sur les missions définies par le constructeur AIXAM-MEGA. Les modules de supercondensateurs retenus sont ensuite caractérisés expérimentalement (capacité, résistance interne, rendement de stockage…) en prenant en compte l’effet de la température.Les troisième et quatrième chapitres sont consacrés à la modélisation du véhicule. En premier lieu, le troisième chapitre aborde la modélisation énergétique du véhicule. Le véhicule a entièrement été modélisé en utilisant le formalisme de représentation énergétique macroscopique développée initialement au Laboratoire d’Électrotechnique et d’Électroniquede Puissance de Lille. Ce modèle a permis de développer le contrôle du véhicule. Ensuite, dans le quatrième chapitre, l’auteur présente la modélisation fonctionnelle du véhicule par machine d’état. Cela permet de prévoir le comportement du véhicule dans ses différentes phases de vie et de définir les transitions entre ces différentes phases. Cette étape deprototypage virtuel est essentielle afin de vérifier en amont la fonctionnalité du véhicule et sa sécurité.Enfin, le cinquième et dernier chapitre est entièrement consacré à la caractérisation expérimentale du véhicule. Les différents fonctionnements thermiques, électriques et hybrides sont testés lors de vrais essais de roulage.En conclusion, le travail de thèse a abouti à la réalisation d’un véhicule hybride. Les approches de dimensionnement des sources et de modélisation sont ainsi validées, tout en faisant également la preuve de la faisabilité d’une chaine cinématique hybride électrique avec couplage par la route. / The exhaustion, increased cost and location of fossil fuels on the one hand, and the environmental problems caused by emissions of CO2 in the atmosphere on the other hand, are forcing many automotive manufactures to develop major research programs in the designof electric vehicles and hybrid electric. In this context, this thesis aims to test the feasibility ofan innovative hybrid drivetrain consisting of a vehicle from existing heat and reduce engine power while adding motors integrated into the wheels of the rear axle. This work was conducted as part of a project funded by ADEME and also in collaboration with the car manufacturer Aixam-MEGA.More specifically, the thesis has focused on the design of energy sources, energy modeling and functional vehicle and finally the implementation and experimental characterization of the vehicle.In the first chapter, the author develops a literature review on the existing hybrid electric vehicles. This allows then to introduce the innovative concept of hybrid drivetrain described above, based somewhat on a road coupling powers of thermal and electric propulsion.In the second chapter the author discusses the design of energy sources focusing on ultracapacitors. It offers an analytical approach simple calculation based on the tasks set by the manufacturer Aixam-MEGA. Modules selected ultracapacitors are then characterized experimentally (capacity, internal resistance, storage efficiency ...) taking into account the effect of temperature.The third and fourth chapters are devoted to the modeling of the vehicle. First, the third chapter discusses the modeling efficiency of the vehicle. The vehicle has been fully modeled using the formalism of Energetic Macroscopic Representation initially developed at the Laboratory of Electrical and Power Electronics of Lille. This model has led to the development of vehicle control. Then, in the fourth chapter, the author presents the functional modeling of the vehicle state machine. This allows predicting the behavior of the vehicle in its different life phases and defining the transitions between these phases. This stage of virtual prototyping is essential to verify the functionality of the upstream and vehicle safety.Finally, the fifth and final chapter is devoted to the experimental characterization of the vehicle. The different operations thermal, electric and hybrid are tested in real taxi trials.In conclusion, the thesis has led to the realization of a hybrid vehicle. The design approaches and modeling of sources and are validated, while also demonstrated the feasibility of a hybrid electric powertrain coupling the road.
6

Evaluation of the performance of GFRP dowels in Jointed Plain Concrete Pavement (JPCP) for road/airport under the combined effect of dowel misalignment and cyclic wheel load

Al-Humeidawi, Basim Hassan Shnawa January 2013 (has links)
Dowel bars are provided at the transverse joints of the Jointed Plain Concrete Pavement (JPCP) to transfer the load between adjoining slabs and to allow for expansion and contraction of the pavement due to temperature and moisture changes. The current study involved evaluation of the performance of Glass Fibre Reinforced Polymer (GFRP) dowels in JPCP as an alternative to the conventional epoxy-coated steel dowel bars, especially in the presence of dowel misalignment. This research involved two main sets of experimental tests. The first set focused on the evaluation of load-deflection response of GFRP dowels using a scaled model of pavement slabs. The second set investigated the combined effect of dowel misalignment and cyclic wheel load on the performance of steel and GFRP dowels. The tested slabs (in the second set) were supported on a steel-beam base with stiffness such that the effects of the underlying layers of real pavements are incorporated. In both of these sets of experiment the GFRP dowels were compared with the steel dowels of similar flexural rigidity. The research also involved detailed numerical investigations using ABAQUS for all experimental tests in the current study. The validated numerical model was used to conduct three sets of parametric studies: to propose design considerations for the GFRP dowels; to simulate all important cases of dowel misalignment (111 cases) for steel and GFRP dowels and to give an insight into the damaged volume in the surrounding concrete pavement; and to investigate the effects of diameter, length and type of dowel bar, concrete grade, pavement thickness, and slab-base friction on the joint-opening behaviour. The results from the first set of experiments showed that the 38 mm GFRP dowels perform better in terms of deflection response compared to the 25 mm steel dowels. Also, it was observed that the relative deflection (RD) is more sensitive to the changes in the joint width rather than the concrete strength. The numerical results from the first set showed a good agreement with the experimental results and showed lower magnitude and better distribution of stress in the concrete underneath the GFRP dowels as compared with the steel dowels. Finally, on the basis of a detailed parametric study (70 different cases), design considerations for GFRP dowels in JPCP were suggested. The second set of experimental results showed that the GFRP dowels can withstand a cyclic traffic load and significantly reduce joint lockup and dowel looseness (DL) and can provide sufficient load transfer efficiency (LTE). It was also observed that the dowel misalignment affects DL significantly more than the repeated traffic load. Slab-base separation and the orientation of misaligned dowels have significant effects on the pull-out load required to open the joint. The numerical results from the second set indicated that the pull-out load was small for the vertical misalignment cases compared to the horizontal and combined misalignment cases. The results also indicated the occurrence of concrete spalling and deterioration at smaller joint openings for combined misalignment when compared to other misalignment types. The use of GFRP dowels significantly reduced the pull-out load and joint lockup when dowel misalignment exists. Consequently, the deterioration of the surrounding pavement substantially decreased. The long term performance of the JPCP fitted with GFRP dowels improves because of a reduction in the DL and the RD, and by maintaining a good LTE even for misaligned dowels. The numerical results also showed that the pull-out load increases significantly for an increase in the concrete compressive strength and the dowel bar diameter. Small increase in pull-out load was observed for higher embedded length of the dowel bar, whereas the increase was insignificant for an increase in the pavement thickness and slab-base friction. In general, the study showed the GFRP dowel can be a potential alternative for the conventional steel dowel bars in JPCP.
7

Multi-Panel CLT Shearwalls: Experimental Assessment, Analytical Development, and Design Considerations

Masroor, Mohammad 12 May 2023 (has links)
Analysis and design of Cross-Laminated Timber (CLT) walls under gravity loads have been outlined in the Canadian timber design standard with an adequate amount of details. The methods for designing shearwalls to resist lateral loads have not yet been fully developed, with only concepts being adopted, based on generalized capacity-based design concepts and definitions of yielding and non-yielding components. Several studies have focused on developing analytical expressions and design approaches for multi-panel CLT shearwalls, assuming angle brackets only behave in shear to prevent sliding, while ignoring compression zone effects in CLT panels. These assumptions may simplify the analysis, but they are not practical, especially since contemporary angle brackets are available on the market with uplift capacities comparable to those of hold-down connections. This study aimed to investigate the lateral behaviour of multi-panel CLT shearwalls and provided practical and comprehensive analytical expressions and design procedures for this type of structure. The analysis aimed to integrate the effects of all boundary connections, including hold-downs, angle brackets, panel-to-panel connections, and compression zones, into the analysis. On the basis of the developed analytical expressions, a capacity-based design procedure was proposed, which promoted rocking behaviour and optimized energy dissipation in the shearwall system. A novel yield hierarchy among various connections was introduced, and expressions for associated over-strength factors are proposed. For multi-storey applications, an approach which ensures uniform energy dissipation along the structure height and limits soft-storey failures was also presented. Experimental tests were conducted at the connection level to study the performance of conventional connections used in CLT shearwalls and to obtain their associated mechanical properties. Furthermore, the performance of multi-panel CLT shearwalls was investigated by conducting wall-level experimental tests to investigate the kinematic modes and establish levels of resistance and deflection. Numerical models were developed to verify the mathematical accuracy of the proposed analytical and design expressions. Also, to validate the proposed analytical expressions, they were compared against the numerical models, as well as the wall-level experimental tests. The results showed a reasonable match between the different approaches in terms of the general shape of the curves and kinematic behaviour.
8

Estudo de deformação permanente em trilha de roda de misturas asfálticas em pista e em laboratório. / Evaluating permanent deformation of asphalt mixtures: field performance and laboratory data.

Moura, Edson de 29 March 2010 (has links)
Dentre os diversos tipos de defeitos estruturais a que um pavimento está sujeito, a deformação permanente em trilha de roda da camada de rolamento é um dos mais importantes, pois além de propiciar uma degradação acelerada da estrutura do pavimento, ele reduz consideravelmente a segurança do usuário. Este trabalho pesquisa os processos que levam à deformação permanente de revestimentos asfálticos, utilizando como estudo de caso uma pista-teste localizada na Rodovia BR 376 PR, construída com a finalidade principal de estudar os afundamentos em trilha de roda. Foram executados 10 trechos, com 200 m de extensão cada um, em aclive, na 3ª faixa de rolamento, sujeita a tráfego pesado de caminhões lentos. Os trechos experimentais consistem de restauração de pista existente, onde foram executados diferentes tipos de revestimentos asfálticos, variando-se o tipo de graduação e também o tipo de ligante asfáltico, todas dosadas pelo método Marshall. Três dos dez trechos foram submetidos ao ensaio acelerado por um simulador de tráfego móvel de pista, em escala real. As misturas asfálticas foram igualmente ensaiadas em laboratório para verificação da dosagem por equipamento giratório francês e por simulador de tráfego tipo LPC. Além disso, foram extraídas placas do revestimento asfáltico da pista-teste as quais foram submetidas ao simulador de tráfego de laboratório. O objetivo central desta pesquisa foi de estudar a consistência dos resultados obtidos em campo e em laboratório, e a previsibilidade de deformações em campo através do método laboratorial. A pesquisa verificou e analisou a redução do volume de vazios das misturas asfálticas em pista e em laboratório associadas à deformação permanente, procurando relacionar a redução do volume de vazios com a deformação. A pesquisa mostrou que os ensaios de laboratório com o simulador de tráfego LPC podem ser empregados para prever as ocorrências de afundamentos em pista. Os resultados indicam a adoção do limite máximo de 5% de deformação permanente no equipamento de laboratório para os tipos de misturas asfálticas testadas para reduzir as possíveis ocorrências de deformações permanentes de revestimentos asfálticos sujeitos a tráfego muito pesado. Nas condições dos ensaios laboratoriais da pesquisa, que se aplicam à pista-teste, as misturas asfálticas mais recomendadas quanto à resistência à deformação permanente são as misturas com asfalto modificado por polímero SBS e RET, e as misturas com asfalto-borracha. Dependendo das características do ligante, o CAP 30/45 também pode ser empregado; no entanto, o CAP 50/70 mostrou-se inadequado para tráfego pesado e lento. A graduação é uma característica relevante para a estabilidade das misturas asfálticas, devendo os agregados estarem bem entrosados no caso das graduações contínuas e bem-graduadas; no entanto a macrotextura resultante deve ser estudada para evitar superfícies fechadas que reduzam a segurança dos usuários em pistas molhadas. Foram estudadas duas misturas descontínuas gap-graded que se mostraram adequadas para tráfego pesado quanto à deformação permanente e à textura superficial. A pesquisa mostra a importância da seleção criteriosa dos materiais e rigor nos estudos de dosagem, com determinação de propriedades mecânicas para melhor prever comportamento em campo de revestimentos asfálticos sujeitos a tráfego pesado e lento. / Among the many types of structural distresses that a pavement is subjected, wheel track rutting is one of the most important because it leads to accelerated deterioration of the pavement structure and also reduces the road safety. This research focus on the processes that lead to rutting in asphalt mixes, using experimental test sites located at Highway BR 376 PR (heavy and slow traffic), which were built with the primary purpose of studying wheel path depressions. Ten testing tracks of 200 m long (total of 2 km) were built on the third lane (upward sloping). The testing tracks were part of the rehabilitation of an existing pavement. Different asphalt mixtures were designed by the Marshall method, varying the aggregate size distribution and the type of asphalt binder. Three of the ten sections were subjected to Accelerated Pavement Testing by the Heavy Vehicle Simulator (in situ). The asphalt mixtures were also prepared and tested in laboratory by the French gyratory compactor and LPC traffic simulator, respectively, in order to verify the mixtures design. In addition, plates were extracted from the asphalt surfaces in the field and then subjected to the traffic simulator in laboratory. The main purpose of this study was to compare the permanent deformation of asphalt mixtures observed in the field to that obtained in the laboratory; and also to evaluate the prediction of permanent deformation based on laboratory evaluation. This research verified the correlation between reduction in the air voids of asphalt mixtures and rutting potential (samples extracted from the field and also prepared in laboratory were analyzed). The research showed that the LPC traffic simulator is a good device to predict permanent deformation of asphalt mixtures in the field. The results indicate 5% as the threshold for the permanent deformation in laboratory to reduce the occurrence of permanent deformation of asphalt mixtures subjected to heavy traffic. For the test conditions used, the mixtures that presented better resistance to permanent deformation were the ones with asphalt modified by SBS and RET, and the asphalt-rubber mixtures. Depending on the asphalt binder characteristics, the CAP 30/45 (classification by penetration) can be used; however the CAP 50/70 presented inadequate behavior for heavy and slow traffic. The aggregate gradation is another important parameter for the stability of asphalt mixtures, where the stones need to present a good interlocking and be wellgraded. The resulting macrotexture should also be evaluated to avoid surfaces with reduced safety to the users in wet conditions. Two mixtures with gap-graded gradation were evaluated and presented good results in respect to permanent deformation and superficial characteristics (texture). This research shows the importance of materials selection, design procedure, and mechanical behavior evaluation to predict the performance of asphalt surfaces subjected to heavy and slow traffic.
9

Avaliação laboratorial e de campo da tecnologia de reciclagem de base com cimento para a reabilitação de pavimentos. / Laboratory and field evaluation of the base recycling with cement for pavement rehabilitation.

Aranha, Ana Luisa 12 December 2012 (has links)
Esta pesquisa avaliou a técnica de reciclagem de solo-agregado com adição de cimento para a reconstrução de pavimentos asfálticos deteriorados. A técnica utilizada consiste da adição de cimento a uma base de solo-brita, configurando assim uma base cimentada de solo-brita-cimento. A utilização de agregados reciclados na pavimentação é prática crescente no Brasil e no mundo, recebendo incentivos públicos e sociais, além de representar grandes benefícios ambientais associados à redução do bota-fora, da exploração de recursos naturais e transporte de insumos. Tais agregados apresentam características únicas, inerentes a sua origem e utilização prévia, portanto necessitam de estudos quando de sua utilização em qualquer camada de pavimento. Os materiais utilizados nesta pesquisa são provenientes da base de solo-brita existente na rodovia Fernão Dias. A esses materiais foi adicionado cimento Portland para compor novos materiais de sub-base reciclada. Por apresentar função estrutural bastante significativa no sistema de camadas do pavimento, a camada cimentada necessita de uma criteriosa e abrangente caracterização mecânica. Esse estudo foi dividido em duas frentes distintas de avaliação: estudos laboratoriais e estudos de campo. Nos estudos laboratoriais foram testadas cinco misturas de material reciclado com cimento, com variações do tipo de materiais reciclado, teor de cimento e energia de compactação. Avaliam-se também diferentes métodos de ensaio, comparando resultados obtidos para procedimento de ensaio de concretos e argamassas, e de materiais granulares. Todas as variáveis testadas em laboratório apresentaram influência no comportamento mecânico das misturas cimentadas. Os estudos de campo consistem da construção e do monitoramento estrutural do trecho experimental, além de ensaios mecânicos em corpos de prova extraídos de pista. Foi possível avaliar a evolução da estrutura do pavimento no período de um ano e fazer a verificação dos parâmetros de rigidez in situ e em laboratório. / This research evaluated the soil-aggregate recycling with cement, soil-aggregate-cement mixtures, as a cementitious subbase solution for pavement rehabilitation. The use of recycled aggregates as paving material is an increasing practice in Brazil and abroad, receiving public and social incentives, as well as representing major environmental benefits associated with the reuse and conservation of natural resources, and reduction of the materials transportation costs. Such aggregates have unique characteristics inherent to their origin and previous use; therefore it should be extensively evaluated whenever used in any pavement layer. The materials selected to this study were collected from the base course of Fernão Dias Highway. To these materials, Portland cement was added, in order to establish new materials to the recycled subbase. Since it presents a very significant structural function in the pavement layers system, the cement treated base requires a careful and comprehensive mechanical characterization. This research was divided in laboratory and field evaluation. Five recycled mixtures with cement were studied in laboratory, varying: the recycled aggregate material, the cement percentage added to the mixture, and the energy compaction. Different laboratory standard procedures, applied for concrete and granular material, were also studied. All the variables investigated influenced the mechanical behavior of the recycled cementitious mixtures. The field study consisted of the construction and structural monitoring of an experimental test site comprised of three segments (varying the thickness of the recycled subbase layer), and also laboratory mechanical tests of field cores. The results have shown the structural evaluation of the pavement along one year, and also stiffness parameters measured in situ from the field cores.
10

Avaliação laboratorial e de campo da tecnologia de reciclagem de base com cimento para a reabilitação de pavimentos. / Laboratory and field evaluation of the base recycling with cement for pavement rehabilitation.

Ana Luisa Aranha 12 December 2012 (has links)
Esta pesquisa avaliou a técnica de reciclagem de solo-agregado com adição de cimento para a reconstrução de pavimentos asfálticos deteriorados. A técnica utilizada consiste da adição de cimento a uma base de solo-brita, configurando assim uma base cimentada de solo-brita-cimento. A utilização de agregados reciclados na pavimentação é prática crescente no Brasil e no mundo, recebendo incentivos públicos e sociais, além de representar grandes benefícios ambientais associados à redução do bota-fora, da exploração de recursos naturais e transporte de insumos. Tais agregados apresentam características únicas, inerentes a sua origem e utilização prévia, portanto necessitam de estudos quando de sua utilização em qualquer camada de pavimento. Os materiais utilizados nesta pesquisa são provenientes da base de solo-brita existente na rodovia Fernão Dias. A esses materiais foi adicionado cimento Portland para compor novos materiais de sub-base reciclada. Por apresentar função estrutural bastante significativa no sistema de camadas do pavimento, a camada cimentada necessita de uma criteriosa e abrangente caracterização mecânica. Esse estudo foi dividido em duas frentes distintas de avaliação: estudos laboratoriais e estudos de campo. Nos estudos laboratoriais foram testadas cinco misturas de material reciclado com cimento, com variações do tipo de materiais reciclado, teor de cimento e energia de compactação. Avaliam-se também diferentes métodos de ensaio, comparando resultados obtidos para procedimento de ensaio de concretos e argamassas, e de materiais granulares. Todas as variáveis testadas em laboratório apresentaram influência no comportamento mecânico das misturas cimentadas. Os estudos de campo consistem da construção e do monitoramento estrutural do trecho experimental, além de ensaios mecânicos em corpos de prova extraídos de pista. Foi possível avaliar a evolução da estrutura do pavimento no período de um ano e fazer a verificação dos parâmetros de rigidez in situ e em laboratório. / This research evaluated the soil-aggregate recycling with cement, soil-aggregate-cement mixtures, as a cementitious subbase solution for pavement rehabilitation. The use of recycled aggregates as paving material is an increasing practice in Brazil and abroad, receiving public and social incentives, as well as representing major environmental benefits associated with the reuse and conservation of natural resources, and reduction of the materials transportation costs. Such aggregates have unique characteristics inherent to their origin and previous use; therefore it should be extensively evaluated whenever used in any pavement layer. The materials selected to this study were collected from the base course of Fernão Dias Highway. To these materials, Portland cement was added, in order to establish new materials to the recycled subbase. Since it presents a very significant structural function in the pavement layers system, the cement treated base requires a careful and comprehensive mechanical characterization. This research was divided in laboratory and field evaluation. Five recycled mixtures with cement were studied in laboratory, varying: the recycled aggregate material, the cement percentage added to the mixture, and the energy compaction. Different laboratory standard procedures, applied for concrete and granular material, were also studied. All the variables investigated influenced the mechanical behavior of the recycled cementitious mixtures. The field study consisted of the construction and structural monitoring of an experimental test site comprised of three segments (varying the thickness of the recycled subbase layer), and also laboratory mechanical tests of field cores. The results have shown the structural evaluation of the pavement along one year, and also stiffness parameters measured in situ from the field cores.

Page generated in 0.1205 seconds