The extra-cellular microenvironment has a fundamental role in tumor growth and progression,
strongly affecting the migration strategies adopted by single cancer cells during metastatic invasion. In
this study, we use a novel microfluidic device to investigate the ability of mesenchymal and epithelial
breast tumor cells to fluidize and migrate through narrowing microstructures upon chemoattractant
stimulation. We compare the migration behavior of two mesenchymal breast cancer cell lines and one
epithelial cell line, and find that the epithelial cells are able to migrate through the narrowest
microconstrictions as the more invasive mesenchymal cells. In addition, we demonstrate that
migration of epithelial cells through a highly compressive environment can occur in absence of a
chemoattractive stimulus, thus evidencing that they are just as prone to react to mechanical cues as
invasive cells
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:84951 |
Date | 26 April 2023 |
Creators | Ficorella, Carlotta, Martinez Vazquez, Rebeca, Heine, Paul, Lepera, Eugenia, Cao, Jing, Warmt, Enrico, Osellame, Roberto, Käs, Josef A. |
Publisher | IOP Publishing |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 1367-2630, 083016 |
Page generated in 0.002 seconds