Return to search

Soluções para problemas elípticos do tipo côncavo-convexo

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2009. / Submitted by Larissa Ferreira dos Angelos (ferreirangelos@gmail.com) on 2010-02-25T20:20:23Z
No. of bitstreams: 1
2009_AdrianaFloresdeAlmeida.pdf: 371677 bytes, checksum: a58a037da87d7945b51a003ecf273858 (MD5) / Approved for entry into archive by Carolina Campos(carolinacamposmaia@gmail.com) on 2010-03-02T15:50:22Z (GMT) No. of bitstreams: 1
2009_AdrianaFloresdeAlmeida.pdf: 371677 bytes, checksum: a58a037da87d7945b51a003ecf273858 (MD5) / Made available in DSpace on 2010-03-02T15:50:22Z (GMT). No. of bitstreams: 1
2009_AdrianaFloresdeAlmeida.pdf: 371677 bytes, checksum: a58a037da87d7945b51a003ecf273858 (MD5)
Previous issue date: 2009-06-10 / Neste trabalho mostraremos a existência de soluções fracas para a seguinte classe de problemas elípticos. (P) { -∆ʋ = h(x)uq + f(x, u), x 2 , x∈Ω
u ≥ 0, Ω,
u = 0, ∂Ω. As principais ferramentas utilizadas são o Princípio Variacional de Ekeland e o Teorema
do Passo da Montanha. ______________________________________________________________________________________ ABSTRACT / In this work we show the existence of weak solutions for the following class for
elliptic problems (P) { -∆ʋ = h(x)uq + f(x, u), x 2 , x∈Ω
u ≥ 0, Ω,
u = 0, ∂Ω. The main tools used are Ekeland’s Variational Principle and Mountain Pass Theorem.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unb.br:10482/3823
Date10 June 2009
CreatorsAlmeida, Adriana Flores de
ContributorsFurtado, Marcelo Fernandes
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UnB, instname:Universidade de Brasília, instacron:UNB
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds