Return to search

Pathway-centric approaches to the analysis of high-throughput genomics data

In the last decade, molecular biology has expanded from a reductionist view to a systems-wide view that tries to unravel the complex interactions of cellular components. Owing to the emergence of high-throughput technology it is now possible to interrogate entire genomes at an unprecedented resolution. The dimension and unstructured nature of these data made it evident that new methodologies and tools are needed to turn data into biological knowledge. To contribute to this challenge we exploited the wealth of publicly available high-throughput genomics data and developed bioinformatics methodologies focused on extracting information at the pathway rather than the single gene level. First, we developed Gene Set Variation Analysis (GSVA), a method that facilitates the organization and condensation of gene expression profiles into gene sets. GSVA enables pathway-centric downstream analyses of microarray and RNA-seq gene expression data. The method estimates sample-wise pathway variation over a population and allows for the integration of heterogeneous biological data sources with pathway-level expression measurements. To illustrate the features of GSVA, we applied it to several use-cases employing different data types and addressing biological questions. GSVA is made available as an R package within the Bioconductor project.

Secondly, we developed a pathway-centric genome-based strategy to reposition drugs in type 2 diabetes (T2D). This strategy consists of two steps, first a regulatory network is constructed that is used to identify disease driving modules and then these modules are searched for compounds that might target them. Our strategy is motivated by the observation that disease genes tend to group together in the same neighborhood forming disease modules and that multiple genes might have to be targeted simultaneously to attain an effect on the pathophenotype. To find potential compounds, we used compound exposed genomics data deposited in public databases. We collected about 20,000 samples that have been exposed to about 1,800 compounds. Gene expression can be seen as an intermediate phenotype reflecting underlying dysregulatory pathways in a disease. Hence, genes contained in the disease modules that elicit similar transcriptional responses upon compound exposure are assumed to have a potential therapeutic effect. We applied the strategy to gene expression data of human islets from diabetic and healthy individuals and identified four potential compounds, methimazole, pantoprazole, bitter orange extract and torcetrapib that might have a positive effect on insulin secretion. This is the first time a regulatory network of human islets has been used to reposition compounds for T2D.

In conclusion, this thesis contributes with two pathway-centric approaches to important bioinformatic problems, such as the assessment of biological function and in silico drug repositioning. These contributions demonstrate the central role of pathway-based analyses in interpreting high-throughput genomics data. / En l'última dècada, la biologia molecular ha evolucionat des d'una perspectiva reduccionista cap a una perspectiva a nivell de sistemes que intenta desxifrar les complexes interaccions entre els components cel•lulars. Amb l'aparició de les tecnologies d'alt rendiment actualment és possible interrogar genomes sencers amb una resolució sense precedents. La dimensió i la naturalesa desestructurada d'aquestes dades ha posat de manifest la necessitat de desenvolupar noves eines i metodologies per a convertir aquestes dades en coneixement biològic. Per contribuir a aquest repte hem explotat l'abundància de dades genòmiques procedents d'instruments d'alt rendiment i disponibles públicament, i hem desenvolupat mètodes bioinformàtics focalitzats en l'extracció d'informació a nivell de via molecular en comptes de fer-ho al nivell individual de cada gen. En primer lloc, hem desenvolupat GSVA (Gene Set Variation Analysis), un mètode que facilita l'organització i la condensació de perfils d'expressió dels gens en conjunts. GSVA possibilita anàlisis posteriors en termes de vies moleculars amb dades d'expressió gènica provinents de microarrays i RNA-seq. Aquest mètode estima la variació de les vies moleculars a través d'una població de mostres i permet la integració de fonts heterogènies de dades biològiques amb mesures d'expressió a nivell de via molecular. Per il•lustrar les característiques de GSVA, l'hem aplicat a diversos casos usant diferents tipus de dades i adreçant qüestions biològiques. GSVA està disponible com a paquet de programari lliure per R dins el projecte Bioconductor.

En segon lloc, hem desenvolupat una estratègia centrada en vies moleculars basada en el
genoma per reposicionar fàrmacs per la diabetis tipus 2 (T2D). Aquesta estratègia consisteix
en dues fases: primer es construeix una xarxa reguladora que s'utilitza per identificar mòduls
de regulació gènica que condueixen a la malaltia; després, a partir d'aquests mòduls es busquen compostos que els podrien afectar. La nostra estratègia ve motivada per l'observació que els gens que provoquen una malaltia tendeixen a agrupar-se, formant mòduls patogènics, i pel fet que podria caldre una actuació simultània sobre múltiples gens per assolir un efecte en el fenotipus de la malaltia. Per trobar compostos potencials, hem usat dades genòmiques exposades a compostos dipositades en bases de dades públiques. Hem recollit unes 20.000 mostres que han estat exposades a uns 1.800 compostos. L'expressió gènica es pot interpretar com un fenotip intermedi que reflecteix les vies moleculars desregulades subjacents a una malaltia. Per tant, considerem que els gens d'un mòdul patològic que responen, a nivell transcripcional, d'una manera similar a l'exposició del medicament tenen potencialment un efecte terapèutic. Hem aplicat aquesta estratègia a dades d'expressió gènica en illots pancreàtics humans corresponents a individus sans i diabètics, i hem identificat quatre compostos potencials (methimazole, pantoprazole, extracte de taronja amarga i torcetrapib) que podrien tenir un efecte positiu sobre la secreció de la insulina. Aquest és el primer cop que una xarxa reguladora d'illots pancreàtics humans s'ha utilitzat per reposicionar compostos per a T2D.

En conclusió, aquesta tesi aporta dos enfocaments diferents en termes de vies moleculars
a problemes bioinformàtics importants, com ho son el contrast de la funció biològica i el
reposicionament de fàrmacs "in silico". Aquestes contribucions demostren el paper central
de les anàlisis basades en vies moleculars a l'hora d'interpretar dades genòmiques procedents
d'instruments d'alt rendiment.

Identiferoai:union.ndltd.org:TDX_UPF/oai:www.tdx.cat:10803/108337
Date11 October 2012
CreatorsHänzelmann, Sonja, 1981-
ContributorsCastelo Valdueza, Robert, Universitat Pompeu Fabra. Departament de Ciències Experimentals i de la Salut
PublisherUniversitat Pompeu Fabra
Source SetsUniversitat Pompeu Fabra
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format484 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
Rightsinfo:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Page generated in 0.0029 seconds