by Wai Lok Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 142-155). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstracts --- p.ii / Contents --- p.vii / List of figures --- p.xiii / List of tables --- p.xvi / Abbreviations --- p.xviii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Pentachlorophenol / Chapter 1.1.1 --- Applications of pentachlorophenol --- p.1 / Chapter 1.1.2 --- Characteristics --- p.3 / Chapter 1.1.3 --- Pentachlorophenol in the environment --- p.3 / Chapter 1.1.4 --- Toxicity of Pentachlorophenol --- p.6 / Chapter 1.2 --- Treatments of Pentachlorophenol --- p.10 / Chapter 1.2.1 --- Physical treatment --- p.10 / Chapter 1.2.2 --- Chemical treatment --- p.11 / Chapter 1.2.3 --- Biological treatment --- p.13 / Chapter 1.3 --- Biodegradation --- p.14 / Chapter 1.3.1 --- Biodegradation of PCP by bacteria --- p.14 / Chapter 1.3.2 --- Biodegradation of PCP by white-rot fungi --- p.15 / Chapter 1.4 --- Biosorption --- p.24 / Chapter 1.5 --- Proposed Strategy --- p.28 / Chapter 1.6 --- Spent Mushroom Compost / Chapter 1.6.1 --- Background --- p.28 / Chapter 1.6.2 --- Physico-chemical properties of SMC --- p.29 / Chapter 1.6.3 --- As a biosorbent --- p.29 / Chapter 1.6.3.1 --- Factors affecting biosorption --- p.31 / Chapter 1.6.3.2 --- Contact time --- p.31 / Chapter 1.6.3.3 --- Initial pH --- p.32 / Chapter 1.6.3.4 --- Concentration of biosorbent --- p.33 / Chapter 1.6.3.5 --- Initial PCP concentration --- p.34 / Chapter 1.6.3.6 --- Incubation temperature --- p.34 / Chapter 1.6.3.7 --- Agitation speed --- p.35 / Chapter 1.6.4 --- Modeling of adsorption --- p.36 / Chapter 1.6.4.1 --- Langmuir isotherm --- p.36 / Chapter 1.6.4.2 --- Freundlich isotherm --- p.36 / Chapter 1.6.5 --- As a source of PCP-degrading bacteria --- p.38 / Chapter 1.6.5.1 --- Identification of PCP-degrading bacterium --- p.40 / Chapter 1.6.6 --- As a source of fungus --- p.42 / Chapter 1.7 --- Objectives of this Study --- p.43 / Chapter 2. --- Materials and Methods --- p.44 / Chapter 2.1 --- Spent Mushroom compost (SMC) Production --- p.44 / Chapter 2.2 --- Characterization of SMC --- p.46 / Chapter 2.2.1 --- pH --- p.46 / Chapter 2.2.2 --- Electrical conductivity --- p.46 / Chapter 2.2.3 --- "Carbon, hydrogen, nitrogen and sulphur contents" --- p.46 / Chapter 2.2.4 --- Infrared spectroscopic study --- p.47 / Chapter 2.2.5 --- Metal analysis --- p.47 / Chapter 2.2.6 --- Anion content --- p.47 / Chapter 2.2.7. --- Chitin assay --- p.48 / Chapter 2.3 --- Extraction of PCP --- p.49 / Chapter 2.3.1 --- Selection of extraction solvent --- p.49 / Chapter 2.3.2 --- Selection of desorbing agent --- p.49 / Chapter 2.3.3 --- Extraction efficiency --- p.50 / Chapter 2.4 --- Adsorption of Pentachlorophenol on SMC --- p.50 / Chapter 2.4.1 --- Preparation of pentachlorophenol (PCP) stock solution --- p.50 / Chapter 2.4.2 --- Batch adsorption experiment --- p.51 / Chapter 2.4.3 --- Quantification of PCP by HPLC --- p.51 / Chapter 2.4.4 --- Data analysis for biosorption --- p.51 / Chapter 2.4.5 --- Optimization of PCP adsorption --- p.52 / Chapter 2.4.5.1 --- Effect of contact time --- p.52 / Chapter 2.4.5.2 --- Effect of initial pH --- p.52 / Chapter 2.4.5.3 --- Effect of incubation temperature --- p.53 / Chapter 2.4.5.4 --- Effect of shaking speed --- p.53 / Chapter 2.4.5.5 --- Effect of initial PCP concentration and amount of biosorbent --- p.53 / Chapter 2.4.6 --- Adsorption isotherm --- p.53 / Chapter 2.4.7 --- Effect of removal efficiency on reuse of biosorbent --- p.54 / Chapter 2.5 --- Biodegradation by Isolated Bacterium --- p.54 / Chapter 2.5.1 --- Isolation of PCP-tolerant bacteria from mushroom compost --- p.54 / Chapter 2.5.2 --- Screening for the best PCP-tolerant bacterium --- p.54 / Chapter 2.5.3 --- Identification of the isolated bacterium --- p.55 / Chapter 2.5.3.1 --- 16S ribosomal DNA sequencing --- p.55 / Chapter 2.5.3.1.1 --- Extraction of DNA --- p.55 / Chapter 2.5.3.1.2 --- Specific PCR for 16S rDNA --- p.56 / Chapter 2.5.3.1.3 --- Gel electrophoresis --- p.57 / Chapter 2.5.3.1.4 --- Purification of PCR products --- p.57 / Chapter 2.5.3.1.5 --- Sequencing of 16S rDNA --- p.58 / Chapter 2.5.3.2 --- Gram staining --- p.60 / Chapter 2.5.3.3 --- Biolog Microstation System --- p.60 / Chapter 2.5.3.4 --- MIDI Sherlock Microbial Identification System --- p.61 / Chapter 2.5.4 --- Optimization of PCP degradation by PCP-degrading bacterium --- p.62 / Chapter 2.5.4.1 --- Effect of incubation time --- p.63 / Chapter 2.5.4.2 --- Effect of shaking speed --- p.63 / Chapter 2.5.4.3 --- Effect of initial PCP concentration and inoculum size --- p.63 / Chapter 2.5.4.4 --- Study of PCP degradation pathway by isolated bacterium using GC-MS --- p.64 / Chapter 2.6 --- Biodegradation by Fungus Pleurotus pulmonarius --- p.64 / Chapter 2.6.1 --- Optimization of PCP degradation by P. pulmonarius --- p.65 / Chapter 2.6.1.1 --- Effect of incubation time --- p.65 / Chapter 2.6.1.2 --- Effect of shaking speed --- p.65 / Chapter 2.6.1.3 --- Effect of initial PCP concentration and inoculum size --- p.65 / Chapter 2.6.2 --- Study of PCP degradation pathway by fungus using GC-MS --- p.65 / Chapter 2.6.3 --- Specific enzyme assays --- p.66 / Chapter 2.6.3.1 --- Extraction of protein and enzymes --- p.66 / Chapter 2.6.3.2 --- Protein --- p.66 / Chapter 2.6.3.3 --- Laccase --- p.67 / Chapter 2.6.3.4 --- Manganese peroxidase (MnP) --- p.67 / Chapter 2.6.4 --- Microtox® assay --- p.67 / Chapter 2.7 --- Statistical Analysis --- p.68 / Chapter 3. --- Results --- p.69 / Chapter 3.1 --- Physico-chemical Properties of SMC --- p.69 / Chapter 3.2 --- Extraction Efficiency and Desorption Efficiency of PCP --- p.69 / Chapter 3.3 --- Batch Adsorption Experiments --- p.76 / Chapter 3.3.1 --- Optimization of adsorption conditions --- p.76 / Chapter 3.3.1.1 --- Effect of contact time --- p.76 / Chapter 3.3.1.2 --- Effect of initial pH --- p.76 / Chapter 3.3.1.3 --- Effect of shaking speed --- p.79 / Chapter 3.3.1.4 --- Effect of incubation temperature --- p.79 / Chapter 3.3.1.5 --- Effect of initial PCP concentration and amount of biosorbent --- p.79 / Chapter 3.3.2 --- Reuse of SMC --- p.83 / Chapter 3.3.3 --- Isotherm plot --- p.83 / Chapter 3.4 --- Biodegradation by PCP-degrading Bacterium --- p.86 / Chapter 3.4.1 --- Isolation and purification of PCP-tolerant bacteria --- p.86 / Chapter 3.4.2 --- Identification of the isolated bacterium --- p.90 / Chapter 3.4.2.1 --- 16S rDNA sequencing --- p.90 / Chapter 3.4.2.2 --- Gram staining --- p.90 / Chapter 3.4.2.3 --- Biolog MicroPlates Identification System --- p.90 / Chapter 3.4.2.4 --- MIDI Sherlock Microbial Identification System --- p.90 / Chapter 3.4.3 --- Growth curve of PCP-degrading bacterium --- p.90 / Chapter 3.4.4 --- Optimization of PCP degradation by PCP-degrading bacterium --- p.97 / Chapter 3.4.4.1 --- Effect of incubation time --- p.97 / Chapter 3.4.4.2 --- Effect of shaking speed --- p.97 / Chapter 3.4.4.3 --- Effect of initial PCP concentration and inoculum size of bacterium --- p.101 / Chapter 3.4.5 --- Determination of breakdown products of PCP by PCP-degrading bacterium --- p.101 / Chapter 3.5 --- Biodegradation by Fungus Pleurotus pulmonarius --- p.103 / Chapter 3.5.1 --- Growth curve of P. pulmonarius --- p.103 / Chapter 3.5.2 --- Optimization of PCP degradation by P. pulmonarius --- p.103 / Chapter 3.5.2.1 --- Effect of incubation time --- p.103 / Chapter 3.5.2.2 --- Effect of shaking speed --- p.103 / Chapter 3.5.2.3 --- Effect of initial PCP concentration and inoculum size of fungus --- p.108 / Chapter 3.5.3 --- Determination of breakdown products of PCP by P. pulmonarius --- p.108 / Chapter 3.5.4 --- Enzyme assays --- p.108 / Chapter 3.6 --- Integration of Biosorption by SMC and Biodegradation by P. pulmonarius --- p.112 / Chapter 3.6.1 --- Evaluation of PCP removal by an integration system --- p.112 / Chapter 3.6.2 --- Evaluation of toxicity by Micortox® assays --- p.112 / Chapter 4. --- Discussion --- p.115 / Chapter 4.1 --- Physico-chemical Properties of SMC --- p.115 / Chapter 4.2 --- Extraction Efficiency and Desorption Efficiency of PCP --- p.116 / Chapter 4.3 --- Batch Biosorption Experiment --- p.117 / Chapter 4.3.1 --- Effect of contact time --- p.117 / Chapter 4.3.2 --- Effect of initial pH --- p.118 / Chapter 4.3.3 --- Effect of shaking speed --- p.120 / Chapter 4.3.4 --- Effect of incubation temperature --- p.120 / Chapter 4.3.5 --- Effect of initial PCP concentration and amount of biosorbent --- p.121 / Chapter 4.3.6 --- Reuse of SMC --- p.122 / Chapter 4.3.7 --- Modeling of biosorption --- p.122 / Chapter 4.4 --- Biodegradation of PCP by PCP-degrading Bacterium --- p.124 / Chapter 4.4.1 --- Isolation and purification of PCP-tolerant bacterium --- p.124 / Chapter 4.4.2 --- Identification of the isolated bacterium --- p.125 / Chapter 4.4.3 --- Optimization of PCP degradation by PCP-degrading bacterium --- p.126 / Chapter 4.4.3.1 --- Effect of incubation time --- p.126 / Chapter 4.4.3.2 --- Effect of shaking speed --- p.128 / Chapter 4.4.3.3 --- Effect of initial PCP concentration and inoculum size of bacterium --- p.128 / Chapter 4.4.4 --- PCP degradation pathway by S. marcescens --- p.129 / Chapter 4.5 --- Biodegradation of PCP by Pleurotus pulmonarius --- p.130 / Chapter 4.5.1 --- Optimization of PCP degradation by P. pulmonarius --- p.130 / Chapter 4.5.1.1 --- Effect of incubation time --- p.131 / Chapter 4.5.1.2 --- Effect of shaking speed --- p.131 / Chapter 4.5.1.3 --- Effect of initial PCP concentration and inoculum size of fungus --- p.131 / Chapter 4.5.2 --- Enzyme activities --- p.132 / Chapter 4.5.3 --- PCP degradation pathway by P. pulmonarius --- p.133 / Chapter 4.6 --- Comparison of PCP Degradation between S.marcescens and P. pulmonarius --- p.133 / Chapter 4.7 --- Integration of Biosorption by SMC and Biodegradation by P. pulmonarius --- p.135 / Chapter 4.8 --- Evaluation of toxicity by Microtox® assay --- p.135 / Chapter 4.9 --- Comparison of PCP Removal by Integration System of Sorption and Fungal Biodegradation and Conventional Treatments --- p.136 / Chapter 4.10 --- Further Investigations --- p.137 / Chapter 5. --- Conclusion --- p.139 / Chapter 6. --- References --- p.142
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324277 |
Date | January 2003 |
Contributors | Wai, Lok Man., Chinese University of Hong Kong Graduate School. Division of Biology. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xix, 155 leaves : ill. ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0135 seconds