Return to search

Intelligent based Packet Scheduling Scheme using Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) Technology for 5G. Design and Investigation of Bandwidth Management Technique for Service-Aware Traffic Engineering using Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) for 5G

Multi-Protocol Label Switching (MPLS) makes use of traffic engineering (TE)
techniques and a variety of protocols to establish pre-determined highly
efficient routes in Wide Area Network (WAN). Unlike IP networks in which
routing decision has to be made through header analysis on a hop-by-hop
basis, MPLS makes use of a short bit sequence that indicates the forwarding
equivalence class (FEC) of a packet and utilises a predefined routing table to
handle packets of a specific FEC type. Thus header analysis of packets is not
required, resulting in lower latency. In addition, packets of similar
characteristics can be routed in a consistent manner. For example, packets
carrying real-time information can be routed to low latency paths across the
networks. Thus the key success to MPLS is to efficiently control and distribute
the bandwidth available between applications across the networks.
A lot of research effort on bandwidth management in MPLS networks has
already been devoted in the past. However, with the imminent roll out of 5G,
MPLS is seen as a key technology for mobile backhaul. To cope with the 5G
demands of rich, context aware and multimedia-based user applications, more
efficient bandwidth management solutions need to be derived.
This thesis focuses on the design of bandwidth management algorithms, more
specifically QoS scheduling, in MPLS network for 5G mobile backhaul. The
aim is to ensure the reliability and the speed of packet transfer across the
network. As 5G is expected to greatly improve the user experience with
innovative and high quality services, users’ perceived quality of service (QoS)
needs to be taken into account when deriving such bandwidth management
solutions. QoS expectation from users are often subjective and vague. Thus
this thesis proposes the use of fuzzy logic based solution to provide service aware and user-centric bandwidth management in order to satisfy
requirements imposed by the network and users.
Unfortunately, the disadvantage of fuzzy logic is scalability since dependable
fuzzy rules and membership functions increase when the complexity of being
modelled increases. To resolve this issue, this thesis proposes the use of neuro-fuzzy to solicit interpretable IF-THEN rules.The algorithms are
implemented and tested through NS2 and Matlab simulations. The
performance of the algorithms are evaluated and compared with other
conventional algorithms in terms of average throughput, delay, reliability, cost,
packet loss ratio, and utilization rate.
Simulation results show that the neuro-fuzzy based algorithm perform better
than fuzzy and other conventional packet scheduling algorithms using IP and
IP over MPLS technologies. / Tertiary Education Trust Fund (TETFUND)

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/18770
Date January 2019
CreatorsMustapha, Oba Z.
ContributorsHu, Yim Fun, Abd-Alhameed, Raed
PublisherUniversity of Bradford, Faculty of Engineering and Informatics
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeThesis, doctoral, PhD
Rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.

Page generated in 0.0026 seconds