Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O objetivo deste trabalho à desenvolver a teoria bÃsica de esquemas e mostrar que duas variedades projetivas birracionalmente equivalentes e nÃo-singulares sobre um corpo algebricamente fechado possuem um mesmo gÃnero geomÃtrico. Um resultado relacionado permite determinar se uma hipersuperfÃcie nÃo-singular de grau d em um espaÃo projetivo Pn à uma variedade nÃo-racional. / This work aims to develop basic scheme theory and show that two projective, non-singular and birationally equivalent varieties over an algebraically closed field have same geometric genus. A related result allows to check whether a non-singular hipersurface of degree d in a projective space Pn is a non-rational variety.
Identifer | oai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:7641 |
Date | 27 February 2013 |
Creators | Laerte Gomes Prado |
Contributors | Josà Alberto Duarte Maia, Francisco Luiz Rocha Pimentel, Fernando Antonio Xavier de Souza |
Publisher | Universidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em MatemÃtica, UFC, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0014 seconds