Return to search

Segmentation générique et classification dans des images 3D+T / Generic segmentation and classification in 3D+T images

La segmentation est le principal problème de l'analyse d'image qui concerne l'extraction de l'information quantitative de l'image. La segmentation d'image partitionne une image en un nombre de régions separées du fond qui pourraient correspondre aux objets dans l'image. La technique la plus simple de segmentation est le seuillage, en considérant par exemple un seuil au dessous duquel les pixels/voxels sont considérés comme du fond. Le problème du seuillage est de trouver un seuil global; si le seuil est très bas, les objets se touchent et cela nécessite un post traitement, en revanche pour un seuil très haut, les objets ayant des intensités faibles seront supprimés. L'information qualitative peut être extraite directement sur l'image segmentée. Or, afin de donner plus de sens aux objets, les objets détéctés peuvent être assignés à des classes ou clusters d'objets prédefinis. Dans cette thèse, je présente une nouvelle contribution dans le domaine de l'informatique appliquée à la biologie. La contribution « informatique » c'est la nouvelle technique d'apprentisage supervisé (machine leaning) afin d'obtenir une nouvelle segmentation et classification sans paramètres. La contribution « biologique » c'est cette nouvelle technique appliquée à la segmentation et la classification de noyaux de differents embryons. Dans cette thèse, je présente une méthode automatique de segmentation et classification appliquée à l'étude de cycle cellulaire de noyaux dans l'embryon pour des images de microscopie 3D/4D. Ce qui permet aux biologistes d'étudier comment les cellules s'organisent spatialement et temporellement à l'intérieur de l'embryon, et de quantifier l'effet des perturbations génétiques et des médicaments. Dans cette thèse, deux nouvelles techniques de segmentation supervisée se basant sur l'apprentissage d'objects prédéfinis sont présentées. La première technique supervisée de segmentation dévéloppée est la composition de machine learning et de seuillage iteratif (seuillage montant). Pour chaque seuil, les objets détéctés passent par la classification. À la fin du seuillage, afin de trouver le meilleur seuil pour chaque objet, le seuil qui donne la plus haute probablité d' appartenance dans la classe stabilisée est pris. Cette technique a donné des résultats relativement bons sur 3 modèles différents d'image malgré la présence de variations d'intensité temporelle et spatiale. Dans la même prespective, une autre technique se basant sur une croissance de region (watershes descendant) a été développée pour surmonter les cas où noyaux de cellule se touchent et présentent des intensités inhomogènes. La technique est basée sur la croissance des région à partir des maximum locaux. Une fois que les régions se réunissent, des combinaisons de régions sont créées et la combinaision qui à la plus haute probablité d' appartenance aux classes d'objets prédéfinis. L'originalité de cette thèse est ; 1- la combinaision de segmentation et classification dans un processus unique. 2- la généricité du modèle de segmentation et classification étant applicable à des images de modèles biologiques différents. 3- l' fait de ne pas de necessité de réglage de paramètres ( Parameter-free ). / Image segmentation, being the main challenge in image analysis that deals with extraction of quantitative information. Segmentation partitions an image into a number of separate regions which might correspond to objects in the image. The simplest technique is thresholding, by considering a threshold below which pixels/voxels are assumed as background. Finding optimal threshold is critical; if the threshold is very low, the observed nuclei in fluorescent image are touching and requires a post-processing, on the other hand, with very high threshold, nuclei with low intensities will be deleted. Afterwards, qualitative information can be extracted directly from segmented image. However, in order to give more meaning to detected objects, these objects can be assigned to predefined classes. This challenge is carried out in this thesis through an automatic method of segmentation and classification which was applied to the study of cell cycle of nuclei in 3D/4D embryo microscopy images. Our method ensures optimal threshold for each object. In this thesis, we present two new segmentation techniques which are based on supervised learning of predefined classes of objects. The first technique of supervised segmentation is realized by combining machine learning and iterative thresholding (bottom-up thresholding). For each threshold, the detected objects will be classified. At the end of thresholding, to find optimal threshold for each object, the threshold that gives the highest probability of belonging in the stabilized class is taken. This technique was tested on three different datasets and gave good results despite the presence of temporal and spatial variations of intensity. In the same perspective, another technique based on a region-growing (top-down thresholding) approach was developed to overcome overlapping and inhomogeneous cell nuclei problems. This technique is based on region-growth from the local maximum. Once the regions meet, combinations of regions are created and combination that gives the highest membership probability to predefined classes of object is retained. The originality of this work is that segmen- tation and classification are performed simultaneously. The program is also generic and applicable to wide biological datasets, without any parameter (parameter-free).

Identiferoai:union.ndltd.org:theses.fr/2014PA066600
Date17 June 2014
CreatorsGul Mohammed, Jaza
ContributorsParis 6, Boudier, Thomas
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0035 seconds