Return to search

Étude topologique du flot horocyclique : le cas des surfaces géométriquement infinies / Topological study of the horocycle flow : the case of geometrically infinite surfaces

On étudie le comportement topologique du flot horocyclique sur des surfaces hyperboliques géométriquement infinies. Cette étude est intimement liée à celle du flot géodésique sur ces surfaces. Le premier chapitre commence par introduire les objets de géométrie hyperbolique que nous utiliserons. Il présente ensuite une classe de surfaces, les flûtes hyperboliques, qui couvrent une grande partie de la complexité des surfaces géométriquement infinies. Enfin, il aborde la notion de finesse asymptotique d'une demi-géodésique, qui donne la limite inférieure du rayon d'injectivité de la surface le long de la demi-géodésique. Le deuxième chapitre est consacré aux propriétés classiques du flot horocyclique sur lesquelles nous baserons nos preuves. Le troisième chapitre concerne l'étude de l'intersection entre l'adhérence de l'orbite horocyclique issue d'un vecteur u d'une surface hyperbolique et la demi orbite géodésique issue de ce même vecteur. Nous montrons que si la finesse asymptotique de la demi-orbite géodésique issue de u est finie et si u n'est pas périodique pour le flot horocyclique, cette intersection contient une infinité divergente de points. Par ailleurs, si la finesse asymptotique est nulle, alors cette intersection est égale à toute la demi-orbite géodésique positive. Nous montrons cependant que même si la finesse asymptotique n'est pas nulle, la demi-orbite géodésique peut tout de même être contenue dans cette intersection. Le quatrième chapitre étudie les liens entre une orbite horocyclique issue d'un vecteur u et la feuille fortement stable associée. Nous commençons par montrer que les adhérences de ces deux ensembles coïncident toujours. Cependant, cette propriété ne s'étend pas aux ensembles eux-mêmes et nous donnons ensuite une condition suffisante pour que qu'ils ne coïncident pas. Nous montrons qu'alors la feuille fortement stable est une union d'une quantité non dénombrable d'orbites horocycliques. / We study the topological behavior of the horocycle flow on geometrically infinite hyperbolic surfaces. This study and that of the geodesic flow are deeply interwoven. The first chapter introduces the basic objects of hyperbolic geometry that we will use. Next, it presents a class of surfaces, the hyperbolic flutes, which carries most of the complexity of geometrically infinite surfaces. Then, it details the notion of asymptotic thinness for a half-geodesic, which determines the size of the most thin parts that this half-geodesic crosses. The second chapter focuses on the classical properties of the horocycle flow on which we will base our proofs. The third chapter presents the study of the intersection between the closure of a horocyclic orbit stemming from a vector u on a hyperbolic surface and the positive half-geodesic stemming from the same vector. We show that if the asymptotic thinness of the half-orbit stemming from u is finite and if u is not periodic for the horocycle flow, then this intersection contains an unbounded sequence of points. Moreover, if the asymptotic thinness is zero, then all the halfgeodesic orbit is included in the intersection. However, we also prove that the half-geodesic orbit can be included in the intersection and even if the asymptotic thinness is not zero. The fourth chapter studies the links between a horocyclic orbit starting from a vector u and the strong stable manifold associated to u. We first show that the closure of these two sets are always the same. However, we then give a sufficient condition for these two sets to be different and we prove that in this case, the strong stable manifold is a reunion of an uncountable number of horocyclic orbits.

Identiferoai:union.ndltd.org:theses.fr/2018REN1S017
Date22 May 2018
CreatorsBellis, Alexandre
ContributorsRennes 1, Dal'Bo-Milonet, Françoise
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds