Le sujet principal de cette thèse est d'interpréter le tenseur d'impulsion-énergie dans le cadre des feuilletages. On s'intéresse dans un premier temps à la géométrie spinorielle transverse, i.e. celle du fibré normal. On définit l'opérateur de Dirac basique sur un feuilletage riemannian et on établit une formule de type Schrodinger-Lichnerowicz. On donne ainsi des inégalités de type Friedrich et de type Kirchberg dans le cas d'un feuilletage kahlérien et une estimation dans le cas d'un feuilletage kahler-quaternionien. Le cas des flots riemanniens va permettre de mieux comprendre le tenseur d'impulsion-énergie dans le cadre des feuilletages. Il apparait comme un tenseur naturel antisymétrique permettant de le voir comme le tenseur d'O'Neill du flot. Finalement, on caractérise le cas de dimension 3 par une solution de l'équation de Dirac.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00116770 |
Date | 13 June 2006 |
Creators | Habib, Georges |
Publisher | Université Henri Poincaré - Nancy I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds