Les lipoxygénases (LOX, EC 1.13.11.12) sont des dioxygénases à fer non héminique très répandues. Chez les végétaux, ces enzymes sont à l’origine d’une voie métabolique impliquée dans de nombreux processus physiologiques, mais aussi dans la réponse à un stress environnemental. La LOX initie la voie en catalysant l’incorporation régiospécifique et stéréospécifique de dioxygène sur le système pentadiénique d’un acide gras libre polyinsaturé (préférentiellement l’acide linoléique ou l’acide linolénique) pour générer un hydroperoxyde d’acide gras.Une lipoxygénase d’olive appelée LOX1, clonée au laboratoire, a été exprimée chez E. coli et purifiée. Elle produit à partir d’acide linoléique des hydroperoxydes de configuration 9S et 13R dans des proportions 2:1. Elle est la seule lipoxygénase végétale décrite à ce jour produisant des hydroperoxydes de configuration R. Les modèles proposés pour expliquer le contrôle de la spécificité réactionnelle des LOX ne s’appliquent pas à la LOX1 d’olive. Afin de mieux comprendre son mécanisme de fonctionnement, un modèle tridimensionnel de la LOX1 d’olive a été construit. La modification par mutagénèse dirigée de deux résidus particuliers, la phénylalanine 277 et la tyrosine 280, a permis d’identifier l’entrée du site actif de la LOX1 d’olive. D’autres résidus particuliers ont été modifiés par mutagénèse dirigée afin d’étudier leur rôle dans le mécanisme catalytique et le contrôle de la spécificité réactionnelle de la LOX1 d’olive. L’analyse globale des résultats obtenus a permis de proposer une première hypothèse quant au fonctionnement de cette enzyme : le substrat pénètrerait dans le site actif de la LOX1 d’olive par son extrémité carboxylate, et serait stabilisé dans le site actif par plusieurs résidus hydrophobes. Un canal pourrait cibler l’oxygène dans le site actif par l’intermédiaire du résidu L579 sur le système pentadiénique du substrat, contrôlant de cette manière la spécificité réactionnelle de la LOX1 d’olive.Par ailleurs, des oxylipines retrouvées chez Arabidopsis, appelées arabidopsides, pourraient être formées par action directe d’une 13-LOX sur des acides gras estérifiés des galactolipides. L’action de la 13-LOX1 de soja, la 9/13-LOX1 d’olive et la 9-LOX de pomme de terre a été testée avec des galactolipides. Une faible activité a été mesurée avec la 13-LOX1 de soja et la 9/13-LOX1 d’olive. Une activité plus importante a été mesurée avec la 9-LOX de pomme de terre. Ces résultats suggèrent que l’action des LOX est possible sur des acides gras estérifiés des galactolipides. / Lipoxygenases (LOXs, EC 1.13.11.12) are widespread dioxygenases containing a non heminic iron atom. In plants, LOXs are at the beginning of a metabolic pathway involved in several physiological processes and in the response to environmental stress. A LOX initiates the pathway, catalyzing a regiospecific and stereospecific insertion of oxygen on the pentadiene system of a free polyunsaturated fatty acid (linoleic or linolenic acid) to form fatty acid hydroperoxides.An olive lipoxygenase called olive LOX1, cloned at laboratory, has been expressed in E. coli strain and purified. Olive LOX1 produces 9S-hydroperoxides of and 13R-hydroperoxides from linoleic acid, in a ratio of 2:1, being the only plant LOX to produce R-hydroperoxides described to date. From the currently known models explaining the control of reactional specificity, none can be applied to olive LOX1. A three-dimensional model has been built by homology modeling to understand the catalytic mechanism of olive LOX1. Site-directed mutagenesis experiments have been used to modify two residues of particular interest, the phenylalanine 277 and the tyrosine 280, allowing us to point the active site entrance near these two residues. Other residues of interest have been modified to study their role in the catalytic mechanism and the reactional specificity of olive LOX1. The results have led us to propose a first hypothesis for the reactional mechanism of this enzyme: the substrate could enter into the active site with its carboxylate-end first, and could be stabilized in the active site by hydrophobic side chains of several residues. A channel could bring oxygen into the active site at a position near the side chain of the leucine 579 residue, this one targeting oxygen onto the pentadiene system of the substrate, controlling by this way the reactional specificity of olive LOX1.LOX are involved in oxylipins synthesis. Arabidopsides are a class of oxylipins found in Arabidopsis that could be produced by action of a 13-LOX on galactolipids, which carry esterified fatty acids. Activity of soybean 13-LOX, olive 9/13-LOX1 and potato 9-LOX has been investigated with galactolipids. A low activity was measured when soybean and olive LOXs were used. Activity was far more important when potato LOX was used. These results suggest that LOX can act on esterified fatty acids, especially galactolipids.
Identifer | oai:union.ndltd.org:theses.fr/2013CORT0009 |
Date | 13 December 2013 |
Creators | Alberti, Jean-Christophe |
Contributors | Corte, Berti-Dupuis, Liliane, Maury, Jacques |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0111 seconds