Return to search

Steerable antenna design based on liquid metal actuation / Conception d’une antenne orientable doté d’un actionnement par métal liquide

L’apparition des objets connectés intelligents dont nous sommes les témoins depuis quelques années a généré un besoin croissant d’antennes à bas coût et énergétiquement sobres. La capacité d’effectuer à la volée une mise en forme du faisceau où sa reconfiguration est une propriété particulièrement intéressante, qui pourrait permettre à l’objet intelligent d’effectuer des tâches telles que la surveillance de zone par exemple ou bien d’optimiser son bilan de liaison en ne visant qu’une seule direction de l’espace. Cela pourrait également mener à un accroissement de l’autonomie de l’objet, via une diminution de sa consommation énergétique, voir à le rendre totalement indépendant s’il devient suffisamment économe pour envisager son alimentation via des systèmes de récupération d’énergie. C’est dans ce contexte que nous proposons ici une nouvelle architecture d’antenne reconfigurable, capable d’un balayage de faisceau sur 360° degrés et basée sur l’utilisation de métal liquide au sein d’un système d’actionnement microfluidique. Dans le premier chapitre, nous ferons une rapide présentation des deux principales technologies de balayage de faisceau utilisées aujourd’hui avant d’étudier les diverses techniques de déplacement de métal liquide utilisées et documentées dans la littérature. L’objectif de ce travail est de sélectionner la technique la plus adaptée à nos besoins. Dans le second chapitre, nous proposerons les deux designs d’antennes envisagés pour notre système, basés sur l’architecture Yagi-Uda. Nous discuterons des avantages et inconvénients de chacun afin d’en sélectionner un qui sera examiné plus en avant dans le chapitre suivant. Dans le troisième chapitre, nous étudierons, à l’aide de simulations électromagnétiques, les performances du design d’antenne sélectionné dans le but de justifier notre choix. Cette étude se concentrera sur l’implémentation graduelle de la complexité du design retenu, en partant d’un système très théorique pour aboutir à une émulation très proche de ce que pourrait être un prototype final. Finalement, dans le quatrième et dernier chapitre nous considérerons deux preuves de concept du système complet ainsi que leurs différentes techniques de fabrications. Étant donné le fait que chaque preuve de concept se concentre soit sur l’aspect RF ou fluidique du système, nous étudierons aussi leurs performances respectives. Nous détaillerons également le développement de certains procédés de fabrication spécifiques utilisés pour réaliser les briques de base, en particulier les objets micro-fluidiques. Ce chapitre nous permet de conclure positivement cette étude de la faisabilité du concept proposé et développé dans ce travail. / The advent of autonomous connected smart objects we are witnessing since a few years has generated a growing need for low cost and energetically sober reconfigurable antennas. The ability to perform on the fly beam shaping and re-configuration is a particularly interesting property which would allow the smart object to perform task such as area surveillance for example and to optimize its link budget by targeting a specific direction of space. This could also allow the increase of the object’s autonomy, through a diminution of its power consumption, or even to render it fully autonomous if it becomes sober enough to envision the use of energy harvesting systems. It is in this context that we propose here a new reconfigurable antenna architecture, capable of 360° beam steering, based on the use of liquid metal within a microfluidic actuation system.In the first chapter, we will do a quick presentation of today’s two main beam steering technics used for antennas before studying the various used and documented technics of liquid metal displacement used in the literature for RF applications. The objective is to single out the better suited one to our requirements.In the second chapter, we will propose the two antenna designs envisioned for our system, based on the Yagi-Uda architecture. We will discuss the advantages and drawbacks of each in order to select one design which will be more closely investigated on the following chapter.In the third chapter, we will study, with the help of electromagnetic simulations, the performances of this selected antenna design in order to justify our choice. This study will focus on the gradual complexity implementation of the chosen design, from a very theoretical system to one very close to what a final prototype would be. Finally, in the fourth and last chapter we will consider two proofs of concept of the complete system and their various fabrications technics. Given that each proof of concept focus either on the RF or the fluidic aspect of the system, we will investigate their performances. We will also detail the development of some of the specific fabrication processes used for the basic building blocks, especially for the fluidic objects. This chapter allow us to conclude positively this study on the feasibility of this concept which was proposed and developed in this work.

Identiferoai:union.ndltd.org:theses.fr/2017BRES0152
Date20 December 2017
CreatorsLe Goff, Denis
ContributorsBrest, Rius, Éric, Coquet, Philippe
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds