L’acide γ-aminobutyrique (GABA) est le principal neurotransmetteur inhibiteur du système nerveux central et est impliqué dans diverses pathologies incluant l’épilepsie, l’anxiété, la dépression et la dépendance aux drogues. Le GABA agit sur l’activité neuronale par l’activation de deux types de récepteurs; le canal chlorique pentamérique GABAA et l’hétérodimère obligatoire de récepteurs couplés aux protéines G (RCPG) GABAB. Chacun des récepteurs est responsable de phases distinctes de la réponse cellulaire au GABA. Lors d’une stimulation par le GABA, il est essentiel pour la cellule de pouvoir contrôler le niveau d’activité des récepteurs et au besoin, de limiter leur activation par des mécanismes de désensibilisation et de régulation négative. La désensibilisation nécessite le découplage du récepteur de ses effecteurs, ainsi que sa compartimentation hors de la membrane plasmique dans le but de diminuer la réponse cellulaire à l’agoniste. Les mécanismes de contrôle de l’activité de GABAB semblent anormaux pour un RCPG et sont encore mal moléculairement caractérisés. L’objet de cette thèse est d’étudier la régulation du récepteur GABAB et de sa signalisation par la caractérisation de nouvelles protéines d’interactions étant impliquées dans la désensibilisation, l’internalisation et la dégradation du récepteur.
Une première étude nous a permis d’identifier la protéine NSF (N-ethylmaleimide sensitive factor) comme interagissant avec le récepteur hétérodimérique. Nous avons caractérisé le site d’interaction au niveau du domaine coiled-coil de chacune des deux sous-unités de GABAB et constaté la dépendance de cette interaction au statut de l’activité ATPasique de NSF. Nous avons observé que cette interaction pouvait être dissociée par l’activation de GABAB, induisant la phosphorylation du récepteur par la protéine kinase C (PKC) parallèlement à la désensibilisation du récepteur. L’activation de PKC par le récepteur est dépendante de l’interaction NSF-GABAB, ce qui suggère une boucle de rétroaction entre NSF et PKC. Nous proposons donc un modèle où, à l’état basal, le récepteur interagit avec NSF, lui permettant d’activer PKC en réponse à la stimulation par un agoniste, et où cette activation permet à PKC de phosphoryler le récepteur, induisant sa dissociation de NSF et sa désensibilisation.
Nous avons par la suite étudié la dégradation et l’ubiquitination constitutive de GABAB et la régulation de celles-ci par PKC et l’enzyme de déubiquitination USP14 (ubiquitin-specific protease 14). Au niveau basal, le récepteur est ubiquitiné, et présente une internalisation et une dégradation rapide. L’activation de PKC augmente l’ubiquitination à la surface cellulaire et l’internalisation, et accélère la dégradation du récepteur. USP14 est en mesure de déubiquitiner le récepteur suite à l’internalisation, mais accélère aussi la dégradation par un mécanisme indépendant de son activité enzymatique. Nos résultats suggèrent un mécanisme où l’ubiquitination promeut l’internalisation et où USP14 cible le récepteur ubiquitiné vers un processus de dégradation lysosomale.
La troisième étude porte sur la régulation de la densité de récepteurs à la membrane plasmique par la protéine Grb2 (growth factor receptor-bound protein 2). Nous avons déterminé que Grb2 interagit avec GABAB1 au niveau de la séquence PEST (riche en proline, glutamate, sérine et thréonine) du domaine carboxyl-terminal, et que cette interaction module l’expression à la surface du récepteur hétérodimérique en diminuant l’internalisation constitutive par un mécanisme encore inconnu. Cette inhibition de l’internalisation pourrait provenir d’une compétition pour le site de liaison de Grb2 à GABAB1, ce site étant dans une région interagissant avec plusieurs protéines impliquées dans le trafic du récepteur, tels le complexe COPI et la sous-unité γ2S du récepteur GABAA (1, 2).
En proposant de nouveaux mécanismes moléculaires contrôlant l’activité et l’expression à la membrane du récepteur GABAB par les protéines NSF, PKC, USP14 et Grb2, les études présentées dans cette thèse permettent de mieux comprendre les processus d’internalisation et de dégradation, ainsi que du contrôle de l’activité de GABAB par la désensibilisation, ouvrant la porte à une meilleure compréhension de la signalisation GABAergique. / γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter of the central nervous system and is involved in diverse pathologies such as epilepsy, anxiety, depression and drug addiction. GABAergic modulation of neuronal activity involves two different subsets of receptors: the GABAA receptor chlorine channel and the heterodimer of G protein coupled receptors (GPCR) GABAB. Each of these receptors is responsible for mediating distinct parts of the GABA-induced signaling. Upon stimulation, it is vital for the cell to control the signaling input and prevent overstimulation, using mechanisms such as functional desensitization and down-regulation to achieve this. The processes controlling GABAB receptor activity are atypical for a GPCR and have yet to be fully characterized. The aim of this thesis is to elucidate the mechanisms controlling GABAB activity by discovering novel proteins interactions mediating receptor desensitization, internalization and ubiquitination.
In the first study, we identified the N-ethylmaleimide sensitive factor (NSF) as a GABAB interacting protein and characterized its interaction site as the coiled-coil structure on both GABAB sub-units. We also showed that this interaction is sensitive to the ATPase state of NSF and that agonist treatment of GABAB led to dissociation of NSF from the receptor in a protein kinase C (PKC) dependent manner. Interestingly, GABA-induced PKC activation was dependent on the NSF-GABAB interaction, suggesting a feedback mechanism for PKC. Both PKC and NSF were involved in mediating receptor desensitization, suggesting a novel role of NSF in receptor signaling regulation. In the proposed model, NSF interacts with GABAB at the basal state, and upon agonist stimulation, PKC is activated and can phosphorylate the receptor, promoting NSF dissociation and GABAB desensitization.
We then studied constitutive GABAB ubiquitination and degradation and its regulation by PKC and the deubiquitinating enzyme USP14 (Ubiquitin-specific protease 14). GABAB shows a high constitutive ubiquitination and internalization level. Activation of PKC promotes both phenomena and accelerates the rate of lysosomal receptor degradation. In contrast, USP14 promotes post-endocytic deubiquitination of the receptor, but also accelerates receptor degradation in a catalytically-independent manner. Our results suggest a mechanism where PKC-induced cell surface ubiquitination promotes GABAB endocytosis and USP14 interaction promotes endosomal sorting toward lysosomal degradation.
In the third study, we identified the growth factor receptor-bound protein 2 (Grb2) as a protein interacting with the PEST (proline, glutamate, serine, threonine rich) sequence of GABAB1 through a SH3-domain interaction and forming a ternary complex with the functional GABAB heterodimer. We showed that Grb2 can regulate cell surface density of GABAB by decreasing constitutive endocytosis, suggesting that this interaction can compete for binding of the PEST sequence with proteins such as the GABAA γ2S sub-unit or the COPI complex (1, 2), promoting higher cell surface stability.
In proposing novel molecular mechanisms controlling GABAB signaling and cell surface expression through NSF, PKC, USP14 and Grb2, this thesis highlights the complex regulation of GABAB activity by its functional desensitization, ubiquitination, endocytosis and degradation.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/10894 |
Date | 04 1900 |
Creators | Lahaie, Nicolas |
Contributors | Bouvier, Michel |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0024 seconds