Return to search

Application of the parallel multicanonical method to lattice gas condensation

We present the speedup from a novel parallel implementation of the multicanonical
method on the example of a lattice gas in two and three dimensions. In this approach, all cores perform independent equilibrium runs with identical weights, collecting their sampled histograms after each iteration in order to estimate consecutive weights. The weights are then redistributed to all cores. These steps are repeated until the weights are converged. This procedure benefits from a minimum of communication while distributing the necessary amount of statistics efficiently. Using this method allows us to study a broad temperature range for a variety of large and complex systems. Here, a gas is modeled as particles on the lattice, which interact only with their nearest neighbors. For a fixed density this model is equivalent to the Ising model with
fixed magnetization. We compare our results to an analytic prediction for equilibrium droplet formation, confirming that a single macroscopic droplet forms only above a critical density.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:80418
Date16 August 2022
CreatorsZierenberg, Johannes, Wiedenmann, Micha, Janke, Wolfhard
PublisherIOP Publishing
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation012017

Page generated in 0.0016 seconds