Spelling suggestions: "subject:"sas condensation"" "subject:"suas condensation""
1 |
Application of the parallel multicanonical method to lattice gas condensationZierenberg, Johannes, Wiedenmann, Micha, Janke, Wolfhard 16 August 2022 (has links)
We present the speedup from a novel parallel implementation of the multicanonical
method on the example of a lattice gas in two and three dimensions. In this approach, all cores perform independent equilibrium runs with identical weights, collecting their sampled histograms after each iteration in order to estimate consecutive weights. The weights are then redistributed to all cores. These steps are repeated until the weights are converged. This procedure benefits from a minimum of communication while distributing the necessary amount of statistics efficiently. Using this method allows us to study a broad temperature range for a variety of large and complex systems. Here, a gas is modeled as particles on the lattice, which interact only with their nearest neighbors. For a fixed density this model is equivalent to the Ising model with
fixed magnetization. We compare our results to an analytic prediction for equilibrium droplet formation, confirming that a single macroscopic droplet forms only above a critical density.
|
2 |
Utveckling av rökgaskondenseringsmodell för kraftvärmeverk / Developing a flue gas condensation modelLindberg, Robin January 2014 (has links)
No description available.
|
3 |
Transition Metal Complexes Anchored on Europium Oxide NanoparticlesZapiter, Joan Marie Diangson 06 January 2014 (has links)
Polypyridyl transition metal complexes containing ruthenium, rhodium and iridium centers are mainly studied due to their light absorbing and emitting properties. Lanthanide oxides such as europium oxide absorb light as well and exhibit strong luminescence and long lifetimes. The optical properties of these materials were significant especially in solar energy utilization schemes and optical applications. Energy transfer across a surface is important in several applications including phosphors and biomedical applications. Excited states of metal complexes with a carboxylate-containing ligand such as deeb = diethyl-2,2'-bipyridine-4,4'-dicarboxylate were studied on nanoparticle surfaces. In this work, [Rh(deeb)2Cl2](PF6), [Ir(deeb)2Cl2](PF6) and [Ir(deeb)2(dpp)](PF6)3 were synthesized using the building block approach. The metal complexes were characterized using 1H NMR spectroscopy, mass spectrometry, electronic absorption spectroscopy and electrochemistry. The 1H NMR spectra of the complexes were consistent with those of their ruthenium analogs. Mass spectra contain fragmentation patterns of the (M-PF6)+ molecular ion for [Rh(deeb)2Cl2](PF6) and [Ir(deeb)2Cl2](PF6), and (M-3PF6)3+ molecular ions for [Ir(deeb)2(dpp)](PF6)3. The electronic absorption spectrum of [Rh(deeb)2Cl2](PF6) shows a maximum at 328 nm, which is assigned as 1π→π*transition. The electronic absorption spectrum of [Ir(deeb)2Cl2](PF6) shows maxima at 308 nm and 402 nm, which are assigned as 1π→π* and metal-to-ligand charge transfer transitions, respectively. The [Ir(deeb)2(dpp)](PF6)3 complex exhibits peaks due to 1π→π* transitions at 322 nm and 334 nm. [Rh(deeb)2Cl2](PF6) has emission maxima from the 3LF state at 680 nm and 704 nm for the solid and glassy solutions at 77 K, respectively. [Ir(deeb)2Cl2](PF6) has emission maxima from the 3MLCT state at 538 nm in acetonitrile and 567 nm in the solid state at room temperature, with lifetimes of 1.71 μs and 0.35 μs, respectively. [Ir(deeb)2Cl2](PF6) has an unusually higher quantum yield than analogous compounds. [Ir(deeb)2(dpp)](PF6)3 has emission maxima from the 3IL state at 540 nm in acetonitrile and 599 nm in the solid state at room temperature, with lifetimes of 1.23 μs and 0.14 μs, respectively. Cyclic voltammetry of [Ir(deeb)2Cl2](PF6) and [Ir(deeb)2(dpp)](PF6)3 yield reversible and quasi-reversible couples corresponding to deeb ligand and Ir3+/+reductions, respectively. Attachment of the complexes were conducted by equilibration of complex solutions in acetonitrile with europium oxide nanoparticles. Europium oxide nanoparticles, which were synthesized by gas-phase condensation, have 11-nm diameters and exhibit sharp f-based luminescence in the visible and near IR regions. EDX, TEM, IR and reflectance spectroscopy measurements indicate substantial coating through various modes of attachment of the nanoparticle surface by the metal complexes while retaining the excited state properties of the metal complexes. Surface adsorption studies indicate monolayer coverage of the nanoparticle surface by the metal complexes, consistent with limiting surface coverages of previously reported analogous systems. Eu2O3 nanoparticles modified with [Rh(deeb)2Cl2]+ exhibit minimal to no energy transfer from emission spectra, and a reduction in the lifetime at 77K could be due to the rhodium complex preventing the excitation of Eu3+. Upon attachment of the Ir complexes [Ir(deeb)2Cl2]+ and [Ir(deeb)2(dpp)]3+ on as-prepared nanoparticles, Eu3+ luminescence was observed for nanoparticles modified with iridium complexes at room temperature, which could be due to energy transfer among other possibilities. Efficiencies of 68% and 50%, and energy transfer rate constants of 1.1 x 10-5 and 1.0 x 10-5 were calculated from lifetime data for [Ir(deeb)2Cl2]+ and [Ir(deeb)2(dpp)]3+ on Eu2O3 nanoparticles, respectively. Since iridium complexes are used as components of light-emitting diodes, europium oxide nanoparticles modified with iridium complexes have potential in optical applications which make studies of these compounds interesting. / Master of Science
|
4 |
Studies On Synthesizing Fe And Fe-Cu Nanopowders By Levitational Gas Condensation Process And Their Consolidation CharacteristicsSivaprahasam, D 12 1900 (has links) (PDF)
There exist large number of techniques for the preparation of nanostructured materials. Among them the preparation of nanopowders by gas/vapour condensation is a popular one. Because of very high level of surface to volume ratio, powders of metals which may or may not be reactive in the bulk form undergo vigorous oxidation. Oxidation once initiated continues in an auto catalytic fashion leading to a rise in temperature further increasing the oxidation rate. Therefore, the nanopowders are consolidated in situ under high vacuum. Alternatively a thin passivating oxide layer of few nm can be produced by slow exposure to air. Such powders lend themselves to be handled in further processing in ambient atmosphere. The main objective of the present research is to understand the various scientific and technological issues involved in preparing such passivated nanopowders by levitational gas condensation (LGC) technique, a relatively less explored vapour condensation process and their subsequent consolidation by the powder metallurgical route of compaction and sintering. The nanopowders systems studied are Fe and Fe-Cu (4 wt. %Cu).
In chapter 1 a brief review of the gas condensation process and the consolidation behavior of nanopowders produced by this method were carried out. Existing knowledge on various topics relevant for the present study like formation of nanoparticles, agglomeration during gas condensation, physical, structural and chemical nature of the passive layer formed during passivation, compaction and sintering behaviour of this passivated nanopowders were discussed.
Chapter 2 details the synthesis of Fe nanopowders by levitational gas condensation process and its physical and structural characteristics. The nanopowders in the as synthesized condition showed extremely low packing density due to loosely packed weakly interlocked agglomerates. The nanoparticles manifest as three dimensional reticulated spongy structure composed of chains of these nanoparticles. Heat transfer calculation carried out to determine the particle temperature at different distance from the levitating drop indicates that the nanoparticles can be ferromagnetic at a distance of less than 2 mm away from the levitation drop and hence the magnetic nature of the materials plays an important role in the formation of nanoparticle chains and spongy agglomerates. Passivation of the nanopowders by slow exposure to air produces 3-4 nm thick oxide layer (Fe3O4) over α-Fe and the volume of these oxides was around 45%.
The 3rd chapter presents and discusses the results of Fe-Cu alloy nanopowder synthesized by levitating gas condensation process. While synthesis of elemental nanopowders by gas condensation is straight forward as the operating conditions only influence the particle size, alloys require careful control of the levitating drop composition. Although initially we start the process with levitated drop of required composition, the vapour generated will be richer in more volatile element (Cu in our case). Thus the composition of the levitated drop progressively becomes deficient in Cu which in turn reduces Cu in the vapour. Composition of the drop can be stabilised by continuous feeding of the alloy of required composition that can be estimated from the knowledge of equilibrium relation. To establish the equilibrium relationship between composition of the liquid and vapour in evaporation and condensation, phase diagram in the liquid and vapour region was calculated and was validated by determining composition of the drops. Good agreement between the drop composition and the composition predicted by the phase diagram were observed. Various physical, chemical and structural properties of the Fe-Cu nanopowders are characterized in detail using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and thermogravimetry (TG) analysis. The overall chemical composition of the Fe-Cu alloy nanopowders and of the individual agglomerates is same as the composition of feed materials used. However, Cu was found to segregate to the surface of the nanopowders which is attributed to minimization of surface energy with Cu at the surface. The total weight loss observed in TG in flowing hydrogen indicates that the surface passive layer of Fe-Cu appears to be very thin compared to Fe.
The consolidation behaviour of both Fe and Fe-Cu nanopowders was studied by both conventional and spark plasma sintering (SPS) and are discussed in chapter 4. The as collected nanopowders from the apparatus have extremely low apparent density. The powders were further subjected to soft milling in a ball mill under ethanol to disentangle the agglomerates there by improving the pack density. A tenfold improvement was achieved thus making it suitable for consolidation. Uniaxial compaction of these powders for conventional sintering at pressure below 200 MPa yielded compacts free from defects. However, at higher pressure the compacts cracks and delaminates during ejection stage. Analysis of the compaction curves helped us to understand various processes involved during compaction as well as providing explanation for lower green density of Fe-Cu powder compared to Fe. Conventional sintering of the nanopowders compacts were carried out in the flowing hydrogen atmosphere in a laboratory vacuum furnace over wide range of temperatures. Instrumented sintering experiments were also carried out in a dilatometer under hydrogen atmosphere to evaluate shrinkage rate at different temperatures. SPS were carried out under 10 Pa vacuum at a compaction pressure of 250 MPa in WC-Co die cavity. The stability, density and residual oxygen content of the sintered compacts were quantified. Detailed microstuctural analysis of the sintered samples were also carried out using optical microscopy, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy and quantitative composition analysis by EDS. Conventionally sintered compacts of both the powders showed stability only when sintered at 700°C and beyond. The maximum shrinkage/densification occured around 450°C for both the powders and the densification rate observed in Fe-Cu is three times higher than Fe. This enhanced densification in Fe-Cu is attributed to an enhanced diffusivity of Fe atoms in the transient liquid Cu layer formed at the interfaces. The microstructure of Fe-Cu is completely free from any separate oxide phase unlike in samples of Fe sintered at 700°C that contain ultrafine oxide grains. This was explained on the basis of role played by acrawax, a lubricant, admixed to increase the green density. Based on the sintered densities of both SPS and conventional sintered compacts, residual oxide content of the compacts sintered at different temperature and experimentally observed shrinkage rate a phenomenological model has been proposed for the possible sequence of processes occurring during sintering of these nanopowders.
The major findings of this work are summarized in chapter 6 and chapter 7 details the scope for the future work.
|
5 |
Modification of Inert Gas Condensation Technique to Achieve Wide Area Distribution of Nanoparticles and Synthesis and Characterization of Nanoparticles for Semiconductor ApplicationsPandya, Sneha G. 22 July 2016 (has links)
No description available.
|
6 |
Rekommenderad framledningstemperatur i fjärrvärmenät baserat på rökgaskondensering : En beräkningsundersökning av rökgaskondensering och fjärrvärme i en medelstor svensk stadHwit, Emil January 2019 (has links)
Fjärrvärme är den vanligaste uppvärmningsformen i Sverige och mer än hälften av alla lokaler och bostäder får sin uppvärmning från gemensamma fjärrvärmeanläggningar. Rökgaskondensering producerar 11 % av all fjärrvärme vilket gör den till den tredje största fjärrvärmeproducenten i Sverige. Det är därför är det viktig att den är så effektiv som möjligt. För att öka effektiviteten i förbränningsanläggningar i fjärrvärmesystem kan rökgaskondensering installeras i sammanband med de flesta bränslen som avger fuktig ånga. Rökgaskondenseringen har en viktig roll i samhället då den tar vara på energi som annars skulle gå förlorad samtidigt som den kan rena avgaserna från förorenade utsläpp. Borlänge‑Energi äger ett rökgaskondenseringssystem på Stora Enso Kvarnsvedens Pappersbruk. De vill nu utreda om deras rökgaskondenseringssystem körs så effektivt som den skulle kunna göra. Den här rapporten undersöker därför hur driften påverkas av förändrade fram- och returledningstemperaturer samt vad produktionskostnadsförändringarna på den producerade värme blir. Beräkningar har genomförts med hjälp av fjärrvärmevattnets densitet, specifikvärmekapacitet, flödes- och temperaturskillnad i Excel. Alla beräkningar har utgått från medianvärdet för månaden och sedan jämförts med vad som händer vid förändrad fram‑ och returledningstemperatur. Som underlag för beräkningarna har data insamlad under perioden januari 2015 och december 2018 använts. Resultatet visar att öka framledningstemperaturen till 95 °C från medianframledningstemperaturerna för respektive månad, det vill säga från temperaturintervall på 79 – 88 °C till 95 °C, ökar energikostnaderna med cirka 2,5 miljoner SEK per år. Kostnaden kan minskas med 400 000 SEK/år genom att sänka returledningstemperaturen till 40 °C. Minskas istället framledningstemperaturen till 75 °C när utomhustemperaturen är varmare än ‑1 °C, minskar de nuvarande energikostnaderna. En minskad framledningstemperatur ger även minskade förluster i ledningarna, minskat slitage, minskad bränsleförbrukning och minskade utsläpp. Temperatursänkning till 75 °C från temperaturintervallet 79 – 88 °C kan minska kostnaderna med 620 000 SEK per år. Skulle returledningstemperaturen sänkas men framledningstemperaturen bibehållas som den är idag kan en kostnadsminskning på över 400 000 SEK nås. Genom att sänka både fram- och returledningstemperaturerna kan en kostnadssparning på över 1 miljon SEK per år ske. Den framledningstemperatur som rekommenderas att Borlänge‑Energi strävar efter är: 75 °C när utomhustemperaturen är varmare än -1 °C 80 °C mellan -2 och -4 °C 85 °C vid -5 °C 90 °C mellan -6 och ‑7 °C 95 °C mellan -8 och -11 °C / The most common way of heating buildings in Sweden is by district heating, more than half of all the locales and homes is heated this way. Flue gas condensation is the third largest contributor of energy in district heating at 11 %. The importance of its efficiency is thereby big. Flue gas condensation can be installed at combustion boilers to increase the efficiency, it can be used in combination with most fuels that exhaust steam. The flue gas condensation has an important role by harnessing the energy in flue gases and cleansing it from environmental hazards. The flue gas condensation unit on Stora Enso Kvarnsveden Mill is owned by Borlänge‑Energi. They want to know if the condenser is operating as effective as it could be. This report investigates how the condenser and external heater at Stora Enso Kvarnsveden Mill is affected by different supply and return temperatures as well as what the production costs of the energy is. The calculations have been accomplished by using the density, specific heat capacity, flow- and temperature differences in Excel. All the calculations have originated from the median value for each month and used in comparison. The basis of the calculations is data that has been collected in the period of January 2015 to December 2018. The results indicate that increasing the supply temperature to 95 °C increases the energy costs by about 2 500 000 SEK per year. These costs can be reduced by 400 000 SEK per year by decreasing the return temperature to 40 °C. If the supply temperature is instead decreased to 75 °C when the temperature outside is higher than -1 °C, the costs decreases. A low supply temperature leads to less wear on the pipes, less heat losses, less fuel consumption and less emissions. This temperature reduction can decrease the costs by 620 000 SEK per year. If the return temperature is reduced but the supply temperature retained as it is today the costs could decrease by over 400 000 SEK per year. And by reducing both the supply and return temperature a cost saving of over 1 000 000 SEK per year could be achieved. The recommendation is therefore a lowering of the supply temperature to 75 °C when the temperature outside is warmer than -1 °C. The recommended supply temperature is: 75 °C when the temperature outside is warmer than -1 °C 80 °C between -2 and -4 °C 85 °C at -5 °C, 90 °C between -6 and ‑7 °C 95 °C between -8 and -11 °C
|
7 |
Operational impact to a CHP plant from integration of a biofuel top cycle pilot unit : A case study of KV62, LinköpingNYMAN, LINNÉA January 2020 (has links)
The coming years are expected to bring multiple challenges for all actors within the energy sector. For the Swedish utility company Tekniska verken AB, one of the upcoming tasks is to adapt their energy technologies to enable renewable, plannable and efficient heat and power production. At the same time as the share of renewable energy increases, the demand grows for technologies that can cover for the intermittency and align with policies and goals for sustainable energy. Part of Tekniska verken’s work is therefore focused on investigation of potential solutions for their heat and power production, that also agrees with the municipality’s vision to become “the World’s most resource efficient region”. One of the current projects within the area regards installation and tests of a of a biofueled top cycle (BTC) with high electric efficiency. The project is carried out together with the owner of the technology: Phoenix Biopower AB. This thesis is part of the pre-study to the pilot project, which is aimed to examine the feasibility of installing a pilot unit of the Phoenix Biopower BTC technology in Tekniska verken’s combined heat and power plant KV62, Linköping, Sweden. The thesis is meant to examine the site feasibility through evaluation of how the operation of KV62 will be influenced by the pilot unit’s operation. The work consists of a mapping of necessary interfaces between KV62 and the BTC pilot unit, followed by an assessment of the impact of the pilot unit on operation of KV62. The feasibility is evaluated with respect to operational limits of KV62 and the study includes both quantitative and qualitative evaluation of the impact from the interfaces between the two units. The study has special focus on the impact from the pilot´s flue gases on the flue gas handling system in KV62 which appeared to be a critical interface with respect to the operational limits. The resulting operational changes in this work indicate that the pilot unit can be installed and run in connection to KV62, but that normal operation of KV62 cannot be sustained during steady state operation of the BTC pilot. This is mainly due to the pilot unit’s load in terms of steam withdrawal, and additional heat to the heat recovery system, that cannot be fully managed with the current capacity for feedwater in KV62. However, there can still be potential solutions to run test campaigns of the BTC pilot simultaneously as KV62 delivers both heat and power. It should be taken into consideration that the pilot units’ behavior during transients are not investigated in this work and therefore need further investigation before a decision about the feasibility of the pilot unit installation can be made. Furthermore, some interfaces have multiple options for their placements, and therefore a detailed heat-and mass balance over KV62 would be suggested to investigate the effects of the symbiosis between the decided interface locations further. / Framtiden förväntas medföra många utmaningar för aktörer inom energisektorn, och för Tekniska verken i Linköping är en av de framtida utmaningarna att anpassa energisystemet till kraft- och värmetekniker som är förnybara, effektiva och planerbara. Samtidigt som andelen förnybara energikällor ökar, växer även behovet för energi som kan täcka för oregelbundenheten hos vind- och solkraft och samtidigt passa i Linköpings vision om att bli världens mest resurseffektiva region. En del av Tekniska verkens arbete är att utforska möjliga lösningar för deras framtida energisystem, och en gren i arbetet med forskning och utveckling är ett projekt med mål att bygga och testa en pilotanläggning av en biobränslebaserad toppcykel (BTC). Projektet genomförs tillsammans med teknologins ägare: Phoenix Biopower. Detta examensarbete är del av förstudien tillhörande pilotprojektet, som är ämnad att undersöka genomförbarheten i att installera en pilotanläggning av Phoenix Biopowers teknologi med ett av Tekniska verken i Linköpings kraftvärmeverk, KV62 som moderanläggning. Examensarbetet syftar till att undersöka projektets genomförbarhet genom utvärdering av hur driften av KV62 kommer påverkas av pilotenheten. Arbetet består av en kartläggning av nödvändiga gränssnitt mellan KV62 och BTC-piloten, vilket följs av en bedömning av pilotenhetens inverkan på driften av KV62. Genomförbarheten utvärderas med avseende på driftsgränser för KV62 och studien inkluderar både kvantitativ och kvalitativ utvärdering av pilotens påverkan på KV62 till följd av gränssnitten mellan de två enheterna. Studien har särskilt fokus på rökgasens gränssnitt, som visade sig kunna vara kritiskt med avseende på påverkan från pilotens rökgas på processerna i KV62. Resultatet från arbetet visar att det är möjligt att ansluta och driva pilotanläggningen vid KV62, men att normal drift av KV62 inte kan bibehållas vid drift av BTC-piloten, framförallt på grund av pilotanläggningens belastning genom uttag av ånga; som inte kan hanteras fullt ut av befintlig kapacitet för matarvatten, och tillskottet av effekt till rökgasstråket vid överhettarna. Innan en slutgiltig bedömning av BTC-pilotens genomförbarhet med avseende på påverkan på KV62 kan göras vore det lämpligt att genomföra en studie av påverkan på KV62 under pilotens transienter, samt en analys av värme- och massbalanser i KV62 för fastställda placeringar av gränssnitten.
|
8 |
Výpočet tepelné bilance využití latentního tepla spalin pomocí kondenzátoru / Calculation of the heat balance of latent heat utilization of flue gases by means of a condenserToman, Filip January 2018 (has links)
Thesis is focused on calculation of the condenser of flue gas, which is created by burning of natural gas. In the first part is theoretical overview of equations describing film condensation and physical properties of the flue gas. The second part deals with practical thermal calculation of the specified condenser. In third part parametric study is done in which a tempature of cooling water at inlet and the coefficient of excess air are changed. The last part of the thesis is dedicated to geometric design of the flue gas condenser whose required power is 8 MW.
|
9 |
Lokal provtagning och analys på rökgaskondensat för driftövervakning av tungmetallrening med jonbytarmassorOlofsson, Emelie January 2020 (has links)
I värme- och kraftvärmeverk förbränns olika typer av bränslen för produktion av el och fjärrvärme. Vid förbränningen bildas rökgaser som innehåller föroreningar, till exempel tungmetaller, från bränslet. Anläggningarna har ofta krav på utsläpp både via rökgaserna och avloppsvatten. Rökgaserna renas därmed genom olika tekniker var av en vanlig teknik är rökgaskondensering. Vid rökgaskondenseringen bildas en vätska, kallad rökgaskondensat, som delvis innehåller tungmetaller från bränslet. Rökgaskondensatet måste renas innan det kan lämna anläggningen och det görs bland annat med tungmetalljonbytare. Jonbytarmassan i tungmetalljonbytarkolonnerna behöver bytas ungefär två gånger per driftsäsong då den inte längre kan binda mer tungmetaller. Detta är en kostnad för värme- och kraftvärmeverken som de vill minimera. I denna studie undersöktes om lokal provtagning och analys på ett kraftvärmeverk av ett antal utvalda tungmetaller i rökgaskondensat är en bra metod för att optimering av reningssteget med tungmetalljonbytare. Samt om detta kan säkerställa att miljökraven för tungmetaller i det renade rökgaskondensatet uppfylls. Med optimering avses att jonbytarmassornas fulla kapacitet utnyttjas, d.v.s. att byten av jonbytarmassor kan reduceras utan att riskera otillåtna halter av tungmetaller i de renade rökgaskondensatet till följd av att jonbytarmassorna använts för länge. Även tiden som behöver avsättas för lokal provtagning och analys dokumenterades. I dagsläget sker analyser hos ackrediterade laboratorium där det tar drygt två veckor att få resultatet och under väntetiden kan mycket på anläggningen förändras. En verifiering av resultaten från studien gjordes mot resultat från ett sådant. I denna studie undersöktes lokal provtagning och analys med mätinstrumentet FREEDD som bygger på tekniken kvartskristall mikrobalans (QCM-teknik). Andra alternativ för lokal analys har inte undersökts här. Resultatet visade att det i dagsläget är svårt att med lokal provtagning optimera reningssteget med jonbytarmassor samt kontrollera utsläppen av tungmetaller via det renade rökgaskondensatet. Korrigeringar hos mätinstrumentet och provpunkterna behöver göras för att få pålitligt resultat. Tiden som behöver avsättas för provtagning och analys beror på vilken metall som ska analyseras då tiden för preparering av prov varierar. Men om det kan möjliggöra att anläggningarna kan använda jonbytarmassorna längre samt får kontroll på utsläppen via det renade rökgaskondensatet kan det vara lönsamt att avvara den tiden. / In heating and combined heat and power plants, different types of fuels are burned to produce electricity and district heating. During the combustion flue gases containing pollutants, such as heavy metals, are formed from the flue. The plants have requirements for low emissions, both from the flue gases and the wastewater. The flue gases are purified by various techniques and a common technique is flue gas condensation. During the flue gas condensation, a liquid called flue gas condensate, is formed, which partly contains heavy metals from the flue. The flue gas condensate must be cleaned before it can leave the plant. A step in the purification of the flue gas condensate is usually heavy metal ion-exchanger. The ion-exchange mass in the heavy metal ion-exchange columns needs to be changed approximately twice per operating season as it no longer has room to bind more heavy metals. This is an expensive cost for the heating and combined heat and power plants that they want to minimize. This study investigated whether local sampling and analysis at a cogeneration plant of a number selected heavy metals in flue gas condensate is a good method for optimizing the purifications step with heavy metal ion-exchangers. And if this can ensure that the environmental requirements for the heavy metals in the purified flue gas condensate are met. Optimization means that the full capacity of the ion-exchange masses is utilized, i.e. that the exchange of ion-exchange masses can be reduced without risking unauthorized levels of heavy metals in the purified flue gas condensate as a result of the ion exchange masses being used for too long. The time needed for local sampling and analysis was also documented. At present, analyzes are done at accredited laboratories where it takes over two weeks to get the result and during that time much can be changes at the plant. A verification of the result of the study was also made against the result of an accredited laboratory. In this study, local analysis was made with the measuring instrument FREEDD which is based on quartz crystal microbalance (QCM-technology). Other options for local sampling and analysis have not been investigated. The result showed that, in the present, it is difficult to optimize the purification step with ion-exchange masses and check emissions of heavy metals with the purified flue gas condensate. To obtain reliable result, corrections to the measuring instrument and test points need to be made. The time that needs to be set aside for sampling and analysis depends on the metal, as the time for sample preparation varies. But if it can enable the plants to use the ion-exchange masses longer and gain control of the emissions of heavy metals with the purified flue gas condensate, it can be profitable to save that time.
|
10 |
Processing Microstructure Evolution and Properties of Nanoscale Aluminum AlloysHan, Jixiong 26 September 2005 (has links)
No description available.
|
Page generated in 0.1213 seconds