• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermo-economic optimization of a combined heat and power plant in Sweden : A case study at Lidköping power plant

Bergström, Jarl, Franzon, Conny January 2020 (has links)
Energy production in power plants comes with both high costs and turnover whereas variations in the production strategy—that is, which boilers, coolers, or generators that should be running—have big impact on the economic result. This is especially true for a combined heat and power (CHP) plant where the production of district heating and electricity is linked, thus allowing for a higher flexibility in the production strategy and potential of increasing the revenue. Previous research states that thermo-economic optimization can have a great impact on economic result of power plants, but every power plant is operating under a unique set of conditions depending on its location, operating market, load demand, construction, surrounding, and the like, and comparable studies on CHP plants in Sweden are very few. This study aims to fill this research gap by evaluating savings potential of a CHP plant in Lidköping, Sweden by utilizing thermo-economic optimization with the approach of combining actual historical data from the power plant with mass-flow equations and constraints to construct a mathematical MODEST model that is optimized by linear programming. The result demonstrates a clear theoretical potential to improve earnings and the conclusion that the studied CHP would benefit by implementing optimization procedures or software to schedule production. The result was also comparable to previous research but varied over time, which highlights how unique conditions may impact the result.
2

Kogeneracinės jėgainės elektrotechninė dalis / Combined heat and power plant electrotechnical part

Dembinskas, Donatas 04 August 2011 (has links)
Kogeneracija – techniškai pažangus šilumos ir elektros energijos gamybos būdas. Elektros energija gaunama iš generatoriaus, o šilumos energija gaunama variklio aušinimo metu. Kadangi Lietuvoje elektros ir šilumos gamyba iš atsinaujinančių energijos šaltinių yra labai aktualu, darbo tikslas: suprojektuoti kogeneracinės jėainės vidaus elektros tinklą, parinkti kogeneratorių. / Cogeneration technologically advanced of heat and electricity production. It is particularly relevant for Lithuania, because there exists a strong need for heat production, the restructuring of heat and electricity networks, is changing its legal framework, the development of market relations. Undergraduate work is designed combined heat and power plant. Cogeneration plant will be used for alternative fuel: biogas which derived from the landfill. However, in order to improve the efficiency of cogeneration landfill gas is mixed with natural gas in certain proportion. Combined heat and power plant is designed according to the Republic of Lithuania laws and regulations. Heat comes from cogeneration emissions into the atmosphere in summer. It was found that in order to increase the heat recovery efficiency, not only in winter but in summer, for example to be equipped with heated vegetable production complexes.
3

Modely toků v síti pro odpadové hospodářství / Network flow models for waste management

Janošťák, František January 2016 (has links)
This thesis is devoted to the construction of new waste-to-energy plants in a territory where is already another fossil-fuel power station in operation. The aim is to create a mathematical model and prove that those two devices are able to cooperate effectively using same technology. Exactly assembled model under real operating have characteristics of a mixed integer nonlinear programming. The optimization software GAMS is used for its calculation. The complexity of the model, however, is at a level that solutions in bad initial conditions ends in local optima, or not found at all. This thesis is devoted to the elimination of non-linearity using binary variables and heuristic so the task was solved with acceptable time limits to guarantee an optimal solution.
4

Klimatpåverkan från användande av skogsrester till bioenergi med koldioxidlagring (BECCS) och biokol i Sverige : En komparativ livscykelanalys mellan två klimatåtgärder i en svensk kontext / Comparative life cycle assessment of using forest residues for Bio-energy with carbon capture and storage (BECCS) and biochar for climate mitigation in Sweden.

Granström, John January 2018 (has links)
Oförmåga att minska utsläppen av växthusgaser i tillräckligt takt för att undvika en alltför kraftig global uppvärmning har motiverat framtagandet av tekniker med potential att minska mängden koldioxid i atmosfären. En av dessa tekniker är bioenergi med koldioxidlagring (Bio-energy with carbon capture and storage, BECCS), där koldioxid avskiljs från punktkällor med biogena utsläpp och lagras i geologiska strukturer. Även biokol tillsatt till jordbruksmark har potential att bidra till negativa utsläpp. Både svenska och internationella strategier inkluderar negativa utsläpp för att uppfylla förpliktelserna i Parisavtalet. För att säkerhetsställa att teknikerna lever upp till potentialen krävs ett livscykelperspektiv där klimatpåverkan beräknas på systemnivå. En livscykelanalys utfördes, där klimatpåverkan vid utnyttjande av grenar och toppar (GROT) från den svenska skogsindustrin beräknades för teknikerna BECCS och biokol tillsatt till jordbruksmark. Teknikerna jämfördes med ett referensscenario där GROT förbränns i ett kraftvärmeverk för att producera el och fjärrvärme utan omhändertagande av koldioxid som bildas vid förbränning. Resultaten visar att BECCS har potentialen att bidra med negativa utsläpp på mellan -168 och -666 kg CO2-ekvivalenter/ ton GROT torrsubstans (TS). Då GROT-skörden ökar till 80% av den årliga avverkade arealen skog i Sverige och kombineras med gallring, resulterar 666 kg CO2-ekvivalenter/ ton GROT TS, i 4,4 miljoner ton CO2-ekvivalenter per år. Detta motsvarar 25,8 % av klimatpåverkan från inrikestransporter i Sverige år 2016. Nettoutsläppen från biokol tillsatt till jordbruksmarker, varierar mellan 934 och -344 kg CO2-ekvivalenter/ ton GROT TS. Då GROT-skörden ökar till 80% av den avverkade arealen skog i Sverige och kombineras med gallring, resulterar 344 kg CO2-ekvivalenter/ton GROT TS i 2,2 miljoner ton CO2-ekvivalenter. Detta motsvarar 13,3 % av klimatpåverkan från inrikes transporter i Sverige år 2016. Båda teknikerna har potential att åstadkomma nettonegativa växthusgasutsläpp, men resultaten är beroende av klimatpåverkan från ersättande el- och fjärrvärmeproduktion. / The inability to achieve sufficient reduction of greenhouse gas emissions has led to the development of techniques with potential to achieve negative greenhouse gas emissions. One of these techniques is called Bio-energy with carbon capture and storage (BECCS), where carbon dioxide is captured from biogenic point sources with biogenic emissions and stored underground. Biochar applied to farmland is another technique with potential to achieve negative greenhouse gas emissions. Both Swedish and international strategies, to meet the obligations in the Paris Agreement, include negative greenhouse gas emissions. A life cycle approach is required to ensure that the techniques deliver on the promise of negative emissions. A Life cycle assessment was conducted where the global warming potential was calculated for BECCS and biochar added to farmland in two different scenarios where tops and branches (GROT) from the Swedish forest industry were used as feedstock. The techniques were compared to a reference scenario where GROT were used in a combined heat and power plant (CHP-plant). The results show that BECCS has the potential to achieve net negative emissions of between -168 and -666 kg CO2-equivalents/ tonne GROT dry matter (DM). When GROT is harvested from 80% of the yearly final felling areas in Sweden and combined with thinning, 666 kg CO2-equivalents/ Mg GROT DM is equivalent to in 4,4 million ton CO2-equivalents per year. This corresponds to 25,8 % of Sweden's greenhouse gas emissions from domestic transportation in 2016. The results of greenhouse gas emissions from biochar applied to farmland varied between 934 to -344 CO2-equivalents/ Mg GROT DM. When GROT is harvested from 80% of final felling areas in Sweden and combined with thinning, -344 CO2-equivalents/ Mg GROT DM is equivalent to 2,2 million ton CO2- equivalents per year. This corresponds to 13,3 % of Sweden's greenhouse gas emissions from domestic transportation in 2016. Both techniques have the potential to achieve net negative greenhouse gas emissions. However, the results are greatly influenced by the climate impact from generating the electricity to replace the losses in electricity production when GROT is used for BECCS and biochar instead of in a CHP-plant.
5

Energiewirtschaftliche Auswirkungen der Power-to-Heat-Technologie in der Fernwärmeversorgung bei Vermarktung am Day-ahead Spotmarkt und am Regelleistungsmarkt

Böttger, Diana 06 November 2017 (has links)
Durch den Ausbau insbesondere wetterabhängiger erneuerbarer Energien steigen zukünftig die Anforderungen an die Bereitstellung von Flexibilität im Stromsektor. Wärmespeicher und Power-to-Heat-Anlagen in der Fernwärmeversorgung können einen großen Beitrag zur Bereitstellung von Flexibilität an der Schnittstelle von Strom- und Wärmesektor liefern. Die vorliegende Arbeit untersucht vor dem Hintergrund von unterschiedlichen regulatorischen Rahmenbedingungen, an welchen Märkten der Einsatz der Power-to-Heat-Anlagen aus Systemsicht den größten Mehrwert zur Integration von erneuerbaren Energien liefern kann. Mithilfe des Strommarktmodells MICOES-Europe wird der stündliche Kraftwerkseinsatz aller europäischen Kraftwerke vor dem Hintergrund des Ausbaus der erneuerbaren Energien untersucht. Ziel der gemischt-ganzzahligen Optimierung, die insbesondere techno-ökonomische Charakteristika thermischer Kraftwerke berücksichtigt, ist die kostenminimale Deckung des Strombedarfs im Großhandelsmarkt bei gleichzeitiger Erfüllung der Leistungsvorhaltung für Regelenergie. In Deutschland werden die größten Fernwärmenetze mit ihren zugehörigen Erzeugungsanlagen (Kraft-Wärme-Kopplungsanlagen, Heizwerke, Wärmespeicher) abgebildet und stündlich die optimale Deckung des Wärmebedarfs berechnet. In einem Szenario für das Jahr 2025 wird die Verfügbarkeit von 1.000 MW an Elektrokesseln in großen deutschen Fernwärmenetzen angenommen. Hierbei wird deren Einsatz nur am Spotmarkt oder nur für negative Sekundärregelleistung dem Fall gegenübergestellt, dass die Anlagen auf beiden Märkten agieren und sich situationsabhängig zwischen ihnen entscheiden können. Es werden dabei die Fälle verglichen, bei denen Elektrokessel entweder Abgaben auf den Stromverbrauch zahlen oder keine zusätzlichen Abgaben tragen müssen. Der Einsatz der Elektrokessel in Verbindung mit Wärmespeichern in der Fernwärmeversorgung kann den Einsatz der KWK-Anlagen so flexibilisieren, dass sich deren Stromerzeugung stärker an die Einspeisesituation der erneuerbaren Energien anpassen kann. Auf diese Weise kann in allen betrachteten Szenarien die marktbedingte Abregelung von erneuerbaren Energien verringert werden. Dabei sinken die CO2-Emissionen der Strom- und Wärmeversorgung ebenfalls in allen Szenarien. Die größten Reduktionen sowohl bei CO2-Emissionen als auch bei den variablen Kosten der Strom- und Wärmeerzeugung werden dabei in den Szenarien mit Teilnahme der Elektrokessel am Regelleistungsmarkt erreicht. Stellen Elektrokessel negative Sekundärregelleistung bereit, kann hierdurch die Must-run-Erzeugung thermischer Kraftwerke in Stunden mit hoher Einspeisung von erneuerbaren Energien deutlich gesenkt werden. Hierdurch ergibt sich ein großer Hebel für die Integration von Strom aus erneuerbaren Energien. / The requirements for the provision of flexibility in the power sector will increase in the future due to the expansion of the usage of weather-dependent renewable energy sources. Heat storage and power-to-heat-plants (electric boilers) in the district heating supply can provide flexibility at the interface of the power and heat sector. At the moment the use of power-to-heat plants is only cost-effective on the control power market due to the current regulation. High charges for the direct use of electricity impede a use on the spot market. The present work examines from a system perspective on which market the use of electric boilers can provide the largest benefits for the integration of renewable energies considering different regu-latory frameworks. The year 2025 is considered where Germany aims to reach a share of 40 to 45 % renewable energy generation in the gross power consumption. For this purpose the hourly power plant dispatch of all European power plants is examined using the electricity market model MICOES-Europe. The model describes the wholesale electricity market and the control power market (secondary and tertiary reserve). The aim of the mixed-integer optimization is the calculation of the cost-minimal coverage of the electricity demand in the wholesale market while at the same time fulfilling the provision of control power. The optimization takes into account in particular the techno-economic characteristics of thermal power plants. In Germany, the largest district heating grids with their associated generation plants (combined heat and power plants, fossil-fuel and electric boilers, heat storage) are modelled and the optimal coverage of the heat demand is calculated for every hour. With the assumed payment of high electricity charges the use of electric boilers on the spot market is no business case in 2025. The situation changes in the scenario without electricity charges. Here, electric boilers reach between 1,050 and 2,140 full load hours. If the electric boilers provide negative secondary control power, the must-run generation of thermal power plants in hours with a high feed-in of renewable energies can be reduced significantly. This results in a large lever for the integration of renewable energies. Electric boilers reach up to 1,800 full load hours by providing control energy, if they provide control power all year round and without payment of electricity charges. The use of the electric boilers in combination with heat storages in the district heating system can make the dispatch of combined heat and power plants more flexible, so that their electricity generation can be better adapted to the feed-in situation of renewable energies. In this way, the market-dependent curtailment of renewable energies can be reduced in all scenarios. The CO2-emissions of the electricity and heat supply can be reduced by this technology in Germany. Furthermore, CO2-emissions in other European countries can be reduced as well due to effects of the power trade. The highest reductions in both CO2-emissions and variable costs of electricity and heat generation are achieved in the scenarios with electric boilers participating in the control power market.
6

Control of carbon dioxide capture from biomass CHP plants : Designing a suitable control system to realize the flexible operation of the CO2 capture system

Rout, Tanmmay January 2023 (has links)
This degree project studies the integration of carbon capture system into biomass fired combined heat and power (bio-CHP) plants. The key disturbances from bio-CHP plants include flue gas flow rate, carbon dioxide (CO2) concentration and available heat for the reboiler because the use of versatile biomass and the dynamic operation of CHP plants results in large fluctuations in the properties of flue gas and the heat input for CO2 capture. To clearly understand the impacts of these disturbances on the performance of CO2 capture, a dynamic CO2 capture model is developed in Aspen Plus Dynamics by using monoethanolamine (MEA) based chemical absorption. Proportional-Integral (PI) feedback controllers are then implemented to further study and compare the performance of the CO2 capture process under different control strategies, the performance with general control settings and fine-tuned controllers are obtained and compared, including both the control performance and system performance. The control performance includes the maximum deviation and settling time, which could reflect only the performance of the controllers.  The system performance includes Captured CO2, reboiler duty and Energy penalty per unit CO2 captured, which could reflect CO2 capture system performance. An equilibrium stage steady state model is first developed for the key components in the CO2 capture plant in Aspen Plus, consisting of the absorber, the stripper, and lean-rich heat exchanger. By sizing the components and employing the pressure driven mode, the steady state model is enabled to be a dynamic model. The disturbances about flue gas and reboiler heat are taken from a real bio-CHP plant in Sweden. Considering the higher flue gas flowrate, the model has been scaled up to meet the requirement of this bio-CHP plant. The addition of controllers are done for the flexible operation of the CO2 capture system and the controlled variables considered in this study are the percentage of CO2 absorbed in the absorber column, reboiler temperature and rich solvent flow in the stripper column. The results show the effects of fluctuations in the key influencing factors on the control performance and the system performance . The fine-tuned controller implemented system showcases better performance when the quantity of CO2 captured is compared with that of the system in the absence of controllers, where a 1.1% increase in the amount of captured CO2 is observed when the flue gas flow rate is increased by 30%. The system also maintains a 1.8% higher capture rate when controllers are implemented. This showcases better system performance when controllers are implemented in the system. To further analyse the effects of control strategies two different control strategies are compared where controllers with general settings are compared to the controllers which are fine-tuning achieved by implementing tuning parameters which were obtained through Internal Model control (IMC) based on the system requirements. The fine tuning of the controllers results in improved system performance where the amount of captured CO2 increases by 1.4% when the reboiler duty is increased by 30% and a 1.7% decrease in the energy penalty per unit CO2 captured. Additionally, the results show that the settling time and maximum deviation are different for the two controllers where the controller which underwent fine tuning maintained the steady set point whereas the controller with general controller tuning showcases deviation before it attained stability. Therefore, the fine-tuned controller is more efficient to enable the flexible operation of CO2 capture when facing disturbance. It is studied that the tuning parameters implemented in the controllers affect the transient operation of the plant and improved the dynamic performance of the capture system. The tuned controllers offered more stability to the capture system while attaining their respective set points in a shorter time frame. It is also found that there exists a big difference between the system’s performance without controllers and that with finely tuned controllers. The difference in captured CO2 amount is approximately 26 ton/h when flue gas flow rate increases by 30%. The percentage difference is 1.1%, 7.7% and  5.9% for Captured CO2, reboiler duty and Energy penalty per unit CO2 captured respectively. In conclusion the control of the transient operation of the CO2 capture system needs the control system implemented and requires fine tuning parameters to achieve the desirable performance.
7

Modélisation et évaluation environnementale des filières de cogénération par combustion et gazéification du bois / Modeling and environmental impact assessment of biomass combustion and gasification combined heat and power plants

François, Jessica 07 July 2014 (has links)
Le développement du bois énergie est un des principaux leviers dans la lutte contre le changement climatique. Cependant son utilisation à grande échelle n’est pas sans risque pour l’environnement. Afin de quantifier les impacts environnementaux de la filière bois énergie, nous avons, dans un premier temps, développé un modèle systémique de la filière, depuis la forêt jusqu’à la production d’énergie. Deux technologies ont été considérées pour la co-production d’électricité et de chaleur à partir de biomasse forestière : l’une, traditionnelle, par combustion directe, et l’autre, plus avancée mais moins mature, par gazéification. Dans le cas de la gazéification, nous avons défini les conditions opératoires les plus favorables du procédé en tenant compte des rendements énergétiques et exergétiques ainsi que de la qualité du syngas. Dans un deuxième temps, nous avons calculé les flux de carbone et de minéraux exportés lors de la récolte du bois ainsi que le nombre d’hectares requis, puis les ressources et rejets liées au fonctionnement des centrales biomasses. Nous avons noté qu’une intensification des pratiques sylvicoles résultait en une augmentation des exportations de minéraux. Enfin, nous avons évalué les performances environnementales des deux filières à l’aide d’une Analyse de Cycle de Vie (ACV). Dans le contexte énergétique français, les deux systèmes offrent des performances très similaires, avec un léger avantage à la combustion. Du point de vue du changement climatique, il serait plus particulièrement bénéfique de développer ces procédés biomasse afin de remplacer les technologies de production d’énergie basées sur les combustibles fossiles / Biomass is one of the most promising renewable energy source in Europe. Its use as a substitute to fossil energy is expected to mitigate climate change. However, potential drawbacks are also feared with large scale development. In order to assess the environmental impacts of the biomass-to-energy chain, we firstly developed a model of the bioenergy system, from the forest to the energy production. We focused on two biomass power plants for combined heat and power (CHP) production: one is based on the conventional direct combustion process while the other is based on the more advanced gasification process. Gasification offers higher electrical efficiency, but its development is still facing technical difficulties. In case of the gasification process, we defined the best operating conditions regarding energetic and exergetic efficiencies, as well as the syngas quality requirements. Secondly, we calculated the carbon and mineral flows taken from the forest through energy wood harvesting, along with the forested area required to feed the CHP plant. The other resources and emissions related to the plant operation were also predicted. We observed that more extensive forestry practices led to an increase in the mineral exports. Finally, we evaluated the environmental performance of the two biomass CHP plants using life cycle assessment (LCA). Within French energy context, we found that both CHP technologies had very similar impacts with a slight advantage toward the combustion process. It appears of particular benefit to replace current fossil energy systems with biomass CHP plants to reduce climate change
8

Topné výměníky, vliv zapojení na účinnost cyklu / Heat exchangers, influence of cycle efficiency

Khůlová, Jitka January 2019 (has links)
The master's thesis deals with district heat exchangers in a thermal steam cycle of combined heat and power plants and with types of condensate cascades in the multilevel heating systems. Calculation of the thermal efficiency of electricity generation is provided for the investigated thermal cycle, which was modified for three different types of cascades. Besides that, a comparison of useful electric power and electricity generation through one year period of working is made. A significant part of the work is devoted to the design of district heat exchangers, including the calculation of thermal power and heat transfer area. Main dimensions are proposed for each exchanger together with a basic drawing.
9

Lokal provtagning och analys på rökgaskondensat för driftövervakning av tungmetallrening med jonbytarmassor

Olofsson, Emelie January 2020 (has links)
I värme- och kraftvärmeverk förbränns olika typer av bränslen för produktion av el och fjärrvärme. Vid förbränningen bildas rökgaser som innehåller föroreningar, till exempel tungmetaller, från bränslet. Anläggningarna har ofta krav på utsläpp både via rökgaserna och avloppsvatten. Rökgaserna renas därmed genom olika tekniker var av en vanlig teknik är rökgaskondensering. Vid rökgaskondenseringen bildas en vätska, kallad rökgaskondensat, som delvis innehåller tungmetaller från bränslet. Rökgaskondensatet måste renas innan det kan lämna anläggningen och det görs bland annat med tungmetalljonbytare. Jonbytarmassan i tungmetalljonbytarkolonnerna behöver bytas ungefär två gånger per driftsäsong då den inte längre kan binda mer tungmetaller. Detta är en kostnad för värme- och kraftvärmeverken som de vill minimera. I denna studie undersöktes om lokal provtagning och analys på ett kraftvärmeverk av ett antal utvalda tungmetaller i rökgaskondensat är en bra metod för att optimering av reningssteget med tungmetalljonbytare. Samt om detta kan säkerställa att miljökraven för tungmetaller i det renade rökgaskondensatet uppfylls. Med optimering avses att jonbytarmassornas fulla kapacitet utnyttjas, d.v.s. att byten av jonbytarmassor kan reduceras utan att riskera otillåtna halter av tungmetaller i de renade rökgaskondensatet till följd av att jonbytarmassorna använts för länge. Även tiden som behöver avsättas för lokal provtagning och analys dokumenterades. I dagsläget sker analyser hos ackrediterade laboratorium där det tar drygt två veckor att få resultatet och under väntetiden kan mycket på anläggningen förändras. En verifiering av resultaten från studien gjordes mot resultat från ett sådant. I denna studie undersöktes lokal provtagning och analys med mätinstrumentet FREEDD som bygger på tekniken kvartskristall mikrobalans (QCM-teknik). Andra alternativ för lokal analys har inte undersökts här.  Resultatet visade att det i dagsläget är svårt att med lokal provtagning optimera reningssteget med jonbytarmassor samt kontrollera utsläppen av tungmetaller via det renade rökgaskondensatet. Korrigeringar hos mätinstrumentet och provpunkterna behöver göras för att få pålitligt resultat. Tiden som behöver avsättas för provtagning och analys beror på vilken metall som ska analyseras då tiden för preparering av prov varierar. Men om det kan möjliggöra att anläggningarna kan använda jonbytarmassorna längre samt får kontroll på utsläppen via det renade rökgaskondensatet kan det vara lönsamt att avvara den tiden. / In heating and combined heat and power plants, different types of fuels are burned to produce electricity and district heating. During the combustion flue gases containing pollutants, such as heavy metals, are formed from the flue. The plants have requirements for low emissions, both from the flue gases and the wastewater. The flue gases are purified by various techniques and a common technique is flue gas condensation. During the flue gas condensation, a liquid called flue gas condensate, is formed, which partly contains heavy metals from the flue. The flue gas condensate must be cleaned before it can leave the plant. A step in the purification of the flue gas condensate is usually heavy metal ion-exchanger. The ion-exchange mass in the heavy metal ion-exchange columns needs to be changed approximately twice per operating season as it no longer has room to bind more heavy metals. This is an expensive cost for the heating and combined heat and power plants that they want to minimize. This study investigated whether local sampling and analysis at a cogeneration plant of a number selected heavy metals in flue gas condensate is a good method for optimizing the purifications step with heavy metal ion-exchangers. And if this can ensure that the environmental requirements for the heavy metals in the purified flue gas condensate are met. Optimization means that the full capacity of the ion-exchange masses is utilized, i.e. that the exchange of ion-exchange masses can be reduced without risking unauthorized levels of heavy metals in the purified flue gas condensate as a result of the ion exchange masses being used for too long.  The time needed for local sampling and analysis was also documented. At present, analyzes are done at accredited laboratories where it takes over two weeks to get the result and during that time much can be changes at the plant. A verification of the result of the study was also made against the result of an accredited laboratory. In this study, local analysis was made with the measuring instrument FREEDD which is based on quartz crystal microbalance (QCM-technology). Other options for local sampling and analysis have not been investigated. The result showed that, in the present, it is difficult to optimize the purification step with ion-exchange masses and check emissions of heavy metals with the purified flue gas condensate. To obtain reliable result, corrections to the measuring instrument and test points need to be made. The time that needs to be set aside for sampling and analysis depends on the metal, as the time for sample preparation varies.  But if it can enable the plants to use the ion-exchange masses longer and gain control of the emissions of heavy metals with the purified flue gas condensate, it can be profitable to save that time.
10

Utilization of Forest Residue through Combined Heat and Power or Biorefinery for Applications in the Swedish Transportation Sector : a comparison in efficiency, emissions, economics and end usage

Fogdal, Hanna, Baars, Adrian January 2017 (has links)
Sweden has the goal of reaching a fossil independent transportation sector by 2030. Two ways to reach the goal is to increase the use of electric vehicles or produce more biofuels. Both alternatives could be powered by forest residue, which is an underutilized resource in the country. Electricity could be produced in a biomass fired Combined Heat and Power (CHP) plant, and biofuel could be produced in a biorefinery through gasification of biomass and Fischer-Tropsch process. When located in Stockholm County, both system can also distribute heat to the district heating system. It is however important to use the biomass in an energy-efficient way. The scope of this work has been to analyze the efficiency together with environmental and economic aspects of the two systems.  To assess the efficiency and environmental impact of the two systems a forest to wheel study was made of the systems where the product was studied from harvesting of forest residue to driving the vehicle. The studied functional units were: kilometers driven by vehicle, kWh of district heating, CO2-equivalents of greenhouse gases and MWh of forest residue. The system using CHP technology and electric vehicles outperformed the biorefinery system on the two first functional units. Using the same amount of forest residue more than twice as much district heating and almost twice as many driven kilometers were produced in this system. The study also showed that both systems avoids significant greenhouse gas emissions and can be part of the solution to decrease emissions from road transportation.  The profitability of investing in a CHP plant or a biorefinery was calculated through the net present value method. It showed that the expected energy prices are too low for the investments to be profitable. The CHP plant investment has a net present value of -1.6 billion SEK and the biorefinery investment has a net present value of -4.6 billion SEK. Furthermore, the biorefinery investment entails higher risk due to the high investment cost and uncommercialized technology. Both systems face barriers for implementation, these barriers have been studied qualitatively. / Sverige har som mål att skapa en fossiloberoende fordonsflotta till år 2030. Två vägar som pekats ut för att nå målet är att öka användningen av eldrivna fordon eller att producera mer biobränsle. Båda alternativen kan drivas av skogsavfall, en råvara som det finns gott om i Sverige. Elektricitet kan produceras av skogsavfallet i ett kraftvärmeverk, och biobränsle i ett bioraffinaderi genom användning av förgasning och Fischer-Tropschmetoden. I Stockholms län skulle båda systemen dessutom kunna producera värme till Stockholms fjärrvärmesystem. Det är dock viktigt att använda skogsavfallet på ett resurseffektivt sätt. Därför undersöker detta arbete effektiviteten av de två olika systemen tillsammans med en analys av växthusgasutsläpp och ekonomiska förutsättningar.  För att kunna utvärdera effektiviteten och klimatpåverkan av de två olika systemen utfördes en ”skog-till-hjul”-analys där produkten undersöktes från ursprunget, till drivandet av ett fordon. För att utföra studien definierades fyra funktionella enheter. De funktionella enheterna var: körsträcka med bil mätt i kilometer, kWh fjärrvärmeproduktion, CO2 ekvivalenter av växthusgasutsläpp och MWh skogsavfall. Studien visade att systemet där skogsavfallet används i ett kraftvärmeverk för att producera elektricitet och ladda elbilar hade bättre resultat i de två första funktionella enheterna. Systemet producerade nästan dubbelt så lång körsträcka och mer än dubbelt så mycket fjärrvärme som systemet där skogsavfallet används i ett bioraffinaderi och biobränslet används i dieselbilar. Studien visade även att båda system kan bidra till att sänka växthusgasutsläppen från transportsektorn.  Lönsamheten att investera i ett kraftvärmeverk eller bioraffinaderi beräknades med nuvärdesmetoden. Studien visade att de förväntade framtida energipriserna är för låga för att investeringarna ska bli lönsamma. Kraftvärmeanläggningen hade ett nuvärde på -1.6 miljarder kronor, och bioraffinaderiet ett nuvärde på -4.6 miljarder kronor. Dessutom ansågs investeringen i ett bioraffinaderi vara en hög risk på grund av den höga investeringskostnaden och att tekniken idag inte är kommersialiserad. Det finns även en rad andra barriär för att genomföra de två olika systemen, dessa barriärer har studerats kvalitativt i arbetet.

Page generated in 0.502 seconds