Return to search

Self-Organizing Neural Visual Models to Learn Feature Detectors and Motion Tracking Behaviour by Exposure to Real-World Data

Advances in unsupervised learning and deep neural networks have led to increased performance in a number of domains, and to the ability to draw strong comparisons between the biological method of self-organization conducted by the brain and computational mechanisms. This thesis aims to use real-world data to tackle two areas in the domain of computer vision which have biological equivalents: feature detection and motion tracking.
The aforementioned advances have allowed efficient learning of feature representations directly from large sets of unlabeled data instead of using traditional handcrafted features. The first part of this thesis evaluates such representations by comparing regularization and preprocessing methods which incorporate local neighbouring information during training on a single-layer neural network. The networks are trained and tested on the Hollywood2 video dataset, as well as the static CIFAR-10, STL-10, COIL-100, and MNIST image datasets. The induction of topography or simple image blurring via Gaussian filters during training produces better discriminative features as evidenced by the consistent and notable increase in classification results that they produce. In the visual domain, invariant features are desirable such that objects can be classified despite transformations. It is found that most of the compared methods produce more invariant features, however, classification accuracy does not correlate to invariance.
The second, and paramount, contribution of this thesis is a biologically-inspired model to explain the emergence of motion tracking behaviour in early development using unsupervised learning. The model’s self-organization is biased by an original concept called retinal constancy, which measures how similar visual contents are between successive frames. In the proposed two-layer deep network, when exposed to real-world video, the first layer learns to encode visual motion, and the second layer learns to relate that motion to gaze movements, which it perceives and creates through bi-directional nodes. This is unique because it uses general machine learning algorithms, and their inherent generative properties, to learn from real-world data. It also implements a biological theory and learns in a fully unsupervised manner. An analysis of its parameters and limitations is conducted, and its tracking performance is evaluated. Results show that this model is able to successfully follow targets in real-world video, despite being trained without supervision on real-world video.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/37096
Date January 2018
CreatorsYogeswaran, Arjun
ContributorsPayeur, Pierre
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0028 seconds