Die Etablierung von Hochdurchsatz-Technologien zur Durchführung von Genexpressionsmessungen führte in den letzten 20 Jahren zu einer stetig wachsende Menge an verfügbaren Daten. Sie ermöglichen durch Kombination einzelner Experimente neue Vergleichsstudien zu kombinieren oder Experimente aus verschiedenen Studien zu großen Datensätzen zu vereinen. Dieses Vorgehen wird als Meta-Analyse bezeichnet und in dieser Arbeit verwendet, um einen großen Genexpressionsdatensatz aus öffentlich zugänglichen T-Zell Experimenten zu erstellen. T-Zellen sind Immunzellen, die eine Vielzahl von unterschiedlichen Funktionen des Immunsystems inititiieren und steuern. Sie können in verschiedene Subtypen mit unterschiedlichen Funktionen differenzieren.
Der mittels Meta-Analyse erstellte Datensatz beinhaltet nur Experimente zu einem T-Zell-Subtyp, den regulatorischen T-Zellen (Treg) bzw. der beiden Untergruppen, natürliche Treg (nTreg) und induzierte Treg (iTreg) Zellen. Eine bisher unbeantwortete Frage lautet, welche subtyp-spezifischen gen-regulatorische Mechanismen die T-Zell Differenzierung steuern. Dazu werden in dieser Arbeit zwei spezifische Herausforderungen der Treg Forschung behandelt: (i) die Identifikation von Zelloberflächenmarkern zur Unterscheidung und Charakterisierung der Subtypen, sowie (ii) die Rekonstruktion von Treg-Zell-spezifischen gen-regulatorischen Netzwerken (GRN), die die Differenzierungsmechanismen beschreiben. Die implementierte Meta-Analyse kombiniert mehr als 150 Microarray-Experimente aus über 30 Studien in einem Datensatz. Dieser wird benutzt, um mittels Machine Learning Zell-spezifische Oberflächenmarker an Hand ihres Expressionsprofils zu identifizieren. Mit der in dieser Arbeit entwickelten Methode wurden 41 Genen extrahiert, von denen sechs Oberflächenmarker sind. Zusätzliche Validierungsexperimente zeigten, dass diese sechs Gene die Experimenten beider T-Zell Subtypen sicher unterscheiden können. Zur Rekonstruktion von GRNs vergleichen wir unter Verwendung des erstellten Datensatzes 11 verschiedene Algorithmen und evaluieren die Ergebnisse mit Informationen aus Interaktionsdatenbanken. Die Evaluierung zeigt, dass die derzeit verfügbaren Methoden nicht in der Lage sind den Wissensstand Treg-spezifischer, regulatorsicher Mechanismen zu erweitern. Abschließend präsentieren wir eine Datenintegrationstrategie zur Rekonstruktion von GRN am Beispiel von Th2 Zellen. Aus Hochdurchsatzexperimenten wird ein Th2-spezifisches GRN bestehend aus 100 Genen rekonstruiert. Während 89 dieser Gene im Kontext der Th2-Zelldifferenzierung bekannt sind, wurden 11 neue Kandidatengene ohne bisherige Assoziation zur Th2-Differenzierung ermittelt. Die Ergebnisse zeigen, dass Datenintegration prinzipiell die GRN Rekonstruktion ermöglicht. Mit der Verfügbarkeit von mehr Daten mit besserer Qualität ist zu erwarten, dass Methoden zur Rekonstruktion maßgeblich zum besseren Verstehen der zellulären Differenzierung im Immunsystem und darüber hinaus beitragen können und so letztlich die Ursachenforschung von Dysfunktionen und Krankheiten des Immunsystems ermöglichen werden. / Within the last two decades high-throughput gene expression screening technologies have led to a rapid accumulation of experimental data. The amounts of information available have enabled researchers to contrast and combine multiple experiments by synthesis, one of such approaches is called meta-analysis. In this thesis, we build a large gene expression data set based on publicly available studies for further research on T cell subtype discrimination and the reconstruction of T cell specific gene regulatory events.
T cells are immune cells which have the ability to differentiate into subtypes with distinct functions, initiating and contributing to a variety of immune processes. To date, an unsolved problem in understanding the immune system is how T cells obtain a specific subtype differentiation program, which relates to subtype-specific gene regulatory mechanisms. We present an assembled expression data set which describes a specific T cell subset, regulatory T (Treg) cells, which can be further categorized into natural Treg (nTreg) and induced Treg (iTreg) cells. In our analysis we have addressed specific challenges in regulatory T cell research: (i) discriminating between different Treg cell subtypes for characterization and functional analysis, and (ii) reconstructing T cell subtype specific gene regulatory mechanisms which determine the differences in subtype-specific roles for the immune system. Our meta-analysis strategy combines more than one hundred microarray experiments. This data set is applied to a machine learning based strategy of extracting surface protein markers to enable Treg cell subtype discrimination.
We identified a set of 41 genes which distinguish between nTregs and iTregs based on gene expression profile only. Evaluation of six of these genes confirmed their discriminative power which indicates that our approach is suitable to extract candidates for robust discrimination between experiment classes. Next, we identify gene regulatory interactions using existing reconstruction algorithms aiming to extend the number of known gene-gene interactions for Treg cells. We applied eleven GRN reconstruction tools based on expression data only and compared their performance. Taken together, our results suggest that the available methods are not yet sufficient to extend the current knowledge by inferring so far unreported Treg specific interactions. Finally, we present an approach of integrating multiple data sets based on different high-throughput technologies to reconstruct a subtype-specific GRN. We constructed a Th2 cell specific gene regulatory network of 100 genes. While 89 of these are known to be related to Th2 cell differentiation, we were able to attribute 11 new candidate genes with a function in Th2 cell differentiation. We show that our approach to data integration does, in principle, allow for the reconstruction of a complex network. Future availability of more and more consistent data may enable the use of the concept of GRN reconstruction to improve understanding causes and mechanisms of cellular differentiation in the immune system and beyond and, ultimately, their dysfunctions and diseases.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/18792 |
Date | 02 August 2017 |
Creators | Kröger, Stefan |
Contributors | Leser, Ulf, Selbig, Joachim, Blüthgen, Nils |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | German |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung-Nicht-kommerziell 3.0 Deutschland, http://creativecommons.org/licenses/by-nc/3.0/de/ |
Page generated in 0.0028 seconds