• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

From birth to birth A cell cycle control network of S. cerevisiae

Münzner, Ulrike Tatjana Elisabeth 23 November 2017 (has links)
Der Zellzyklus organisiert die Zellteilung, und kontrolliert die Replikation der DNA sowie die Weitergabe des Genoms an die nächste Zellgeneration. Er unterliegt einer strengen Kontrolle auf molekularer Ebene. Diese molekularen Kontrollmechanismen sind für das Überleben eines Organismus essentiell, da Fehler Krankheiten begüngstigen können. Vor allem Krebs ist assoziiert mit Abweichungen im Ablauf des Zellzyklus. Die Aufklärung solcher Kontrollmechanismen auf molekularer Ebene ermöglicht einerseits das Verständnis deren grundlegender Funktionsweise, andererseits können solche Erkenntnisse dazu beitragen, Methoden zu entwickeln um den Zellzyklus steuern zu können. Um die molekularen Abläufe des Zellzyklus in ihrer Gesamtheit besser zu verstehen, eignen sich computergestützte Analysen. Beim Zellzyklus handelt es sich um einen Signaltransduktionsweg. Die Eigenschaften dieser Prozesse stellen Rekonstruktion und Übersetzung in digital lesbare Formate vor besondere Herausforderungen in Bezug auf Skalierbarkeit, Simulierbarkeit und Parameterschätzung. Diese Studie präsentiert eine großskalige Netzwerkrekonstruktion des Zellzyklus des Modellorganismus Saccharomyces cerevisiae. Hierfür wurde die reaction-contingency Sprache benutzt, die sowohl eine mechanistisch detaillierte Rekonstruktion auf molekularer Ebene zulässt, als auch deren Übersetzung in ein bipartites Boolesches Modell. Für das Boolesche Modell mit 2506 Knoten konnte ein zyklischer Attraktor bestimmt werden, der das Verhalten einer sich teilenden Hefezelle darstellt. Das Boolesche Modell reproduziert zudem das erwartete phänotypische Verhalten bei Aktivierung von vier Zellzyklusinhibitoren, und in 32 von 37 getesteten Mutanten. Die Rekonstruktion des Zellzyklus der Hefe kann in Folgestudien genutzt werden, um Signaltransduktionswege zu integrieren, die mit dem Zellzyklus interferieren, deren Schnittstellen aufzuzeigen, und dem Ziel, die molekularen Mechanismen einer ganzen Zelle abzubilden, näher zu kommen. Diese Studie zeigt zudem, dass eine auf reaction- contingency Sprache basierte Rekonstruktion geeignet ist, um ein biologisches Netzwerk konsistent mit empirischer Daten darzustellen, und gleichzeitig durch Simulation die Funktionalität des Netzwerkes zu überprüfen. / The survival of a species depends on the correct transmission of an intact genome from one generation to the next. The cell cycle regulates this process and its correct execution is vital for survival of a species. The cell cycle underlies a strict control mechanism ensuring accurate cell cycle progression, as aberrations in cell cycle progression are often linked to serious defects and diseases such as cancer. Understanding this regulatory machinery of the cell cycle offers insights into how life functions on a molecular level and also provides for a better understanding of diseases and possible approaches to control them. Cell cycle control is furthermore a complex mechanism and studying it holistically provides for understanding its collective properties. Computational approaches facilitate holistic cell cycle control studies. However, the properties of the cell cycle control network challenge large-scale in silico studies with respect to scalability, model execution and parameter estimation. This thesis presents a mechanistically detailed and executable large-scale reconstruction of the Saccharomyces cerevisiae cell cycle control network based on reaction- contingency language. The reconstruction accounts for 229 proteins and consists of three individual cycles corresponding to the macroscopic events of DNA replication, spindle pole body duplication, and bud emergence and growth. The reconstruction translated into a bipartite Boolean model has, using an initial state determined with a priori knowledge, a cyclic attractor which reproduces the cyclic behavior of a wildtype yeast cell. The bipartite Boolean model has 2506 nodes and correctly responds to four cell cycle arrest chemicals. Furthermore, the bipartite Boolean model was used in a mutational study where 37 mutants were tested and 32 mutants found to reproduce known phenotypes. The reconstruction of the cell cycle control network of S. cerevisiae demonstrates the power of the reaction-contingency based approach, and paves the way for network extension with regard to the cell cycle machinery itself, and several signal transduction pathways interfering with the cell cycle.
2

Bioinformatic analyses for T helper cell subtypes discrimination and gene regulatory network reconstruction

Kröger, Stefan 02 August 2017 (has links)
Die Etablierung von Hochdurchsatz-Technologien zur Durchführung von Genexpressionsmessungen führte in den letzten 20 Jahren zu einer stetig wachsende Menge an verfügbaren Daten. Sie ermöglichen durch Kombination einzelner Experimente neue Vergleichsstudien zu kombinieren oder Experimente aus verschiedenen Studien zu großen Datensätzen zu vereinen. Dieses Vorgehen wird als Meta-Analyse bezeichnet und in dieser Arbeit verwendet, um einen großen Genexpressionsdatensatz aus öffentlich zugänglichen T-Zell Experimenten zu erstellen. T-Zellen sind Immunzellen, die eine Vielzahl von unterschiedlichen Funktionen des Immunsystems inititiieren und steuern. Sie können in verschiedene Subtypen mit unterschiedlichen Funktionen differenzieren. Der mittels Meta-Analyse erstellte Datensatz beinhaltet nur Experimente zu einem T-Zell-Subtyp, den regulatorischen T-Zellen (Treg) bzw. der beiden Untergruppen, natürliche Treg (nTreg) und induzierte Treg (iTreg) Zellen. Eine bisher unbeantwortete Frage lautet, welche subtyp-spezifischen gen-regulatorische Mechanismen die T-Zell Differenzierung steuern. Dazu werden in dieser Arbeit zwei spezifische Herausforderungen der Treg Forschung behandelt: (i) die Identifikation von Zelloberflächenmarkern zur Unterscheidung und Charakterisierung der Subtypen, sowie (ii) die Rekonstruktion von Treg-Zell-spezifischen gen-regulatorischen Netzwerken (GRN), die die Differenzierungsmechanismen beschreiben. Die implementierte Meta-Analyse kombiniert mehr als 150 Microarray-Experimente aus über 30 Studien in einem Datensatz. Dieser wird benutzt, um mittels Machine Learning Zell-spezifische Oberflächenmarker an Hand ihres Expressionsprofils zu identifizieren. Mit der in dieser Arbeit entwickelten Methode wurden 41 Genen extrahiert, von denen sechs Oberflächenmarker sind. Zusätzliche Validierungsexperimente zeigten, dass diese sechs Gene die Experimenten beider T-Zell Subtypen sicher unterscheiden können. Zur Rekonstruktion von GRNs vergleichen wir unter Verwendung des erstellten Datensatzes 11 verschiedene Algorithmen und evaluieren die Ergebnisse mit Informationen aus Interaktionsdatenbanken. Die Evaluierung zeigt, dass die derzeit verfügbaren Methoden nicht in der Lage sind den Wissensstand Treg-spezifischer, regulatorsicher Mechanismen zu erweitern. Abschließend präsentieren wir eine Datenintegrationstrategie zur Rekonstruktion von GRN am Beispiel von Th2 Zellen. Aus Hochdurchsatzexperimenten wird ein Th2-spezifisches GRN bestehend aus 100 Genen rekonstruiert. Während 89 dieser Gene im Kontext der Th2-Zelldifferenzierung bekannt sind, wurden 11 neue Kandidatengene ohne bisherige Assoziation zur Th2-Differenzierung ermittelt. Die Ergebnisse zeigen, dass Datenintegration prinzipiell die GRN Rekonstruktion ermöglicht. Mit der Verfügbarkeit von mehr Daten mit besserer Qualität ist zu erwarten, dass Methoden zur Rekonstruktion maßgeblich zum besseren Verstehen der zellulären Differenzierung im Immunsystem und darüber hinaus beitragen können und so letztlich die Ursachenforschung von Dysfunktionen und Krankheiten des Immunsystems ermöglichen werden. / Within the last two decades high-throughput gene expression screening technologies have led to a rapid accumulation of experimental data. The amounts of information available have enabled researchers to contrast and combine multiple experiments by synthesis, one of such approaches is called meta-analysis. In this thesis, we build a large gene expression data set based on publicly available studies for further research on T cell subtype discrimination and the reconstruction of T cell specific gene regulatory events. T cells are immune cells which have the ability to differentiate into subtypes with distinct functions, initiating and contributing to a variety of immune processes. To date, an unsolved problem in understanding the immune system is how T cells obtain a specific subtype differentiation program, which relates to subtype-specific gene regulatory mechanisms. We present an assembled expression data set which describes a specific T cell subset, regulatory T (Treg) cells, which can be further categorized into natural Treg (nTreg) and induced Treg (iTreg) cells. In our analysis we have addressed specific challenges in regulatory T cell research: (i) discriminating between different Treg cell subtypes for characterization and functional analysis, and (ii) reconstructing T cell subtype specific gene regulatory mechanisms which determine the differences in subtype-specific roles for the immune system. Our meta-analysis strategy combines more than one hundred microarray experiments. This data set is applied to a machine learning based strategy of extracting surface protein markers to enable Treg cell subtype discrimination. We identified a set of 41 genes which distinguish between nTregs and iTregs based on gene expression profile only. Evaluation of six of these genes confirmed their discriminative power which indicates that our approach is suitable to extract candidates for robust discrimination between experiment classes. Next, we identify gene regulatory interactions using existing reconstruction algorithms aiming to extend the number of known gene-gene interactions for Treg cells. We applied eleven GRN reconstruction tools based on expression data only and compared their performance. Taken together, our results suggest that the available methods are not yet sufficient to extend the current knowledge by inferring so far unreported Treg specific interactions. Finally, we present an approach of integrating multiple data sets based on different high-throughput technologies to reconstruct a subtype-specific GRN. We constructed a Th2 cell specific gene regulatory network of 100 genes. While 89 of these are known to be related to Th2 cell differentiation, we were able to attribute 11 new candidate genes with a function in Th2 cell differentiation. We show that our approach to data integration does, in principle, allow for the reconstruction of a complex network. Future availability of more and more consistent data may enable the use of the concept of GRN reconstruction to improve understanding causes and mechanisms of cellular differentiation in the immune system and beyond and, ultimately, their dysfunctions and diseases.
3

Bridging network reconstruction and mathematical modelling - rxncon a framework to reconstruct, visualise and model signal-transduction networks

Thieme, Sebastian 17 October 2017 (has links)
Lebende Organismen sind komplexe Systeme von miteinander interagierenden Komponen- ten. Ein entscheidender Schritt zum besseren Verständnis solcher biologischen Systeme ist die Erstellung biologischer Netzwerke, welche unser bisheriges Verständnis dieser Systeme widerspiegelt. Verschiedene Ansätze zur Netzwerk-Rekonstruktion unterscheiden sich zwar in ihrem Zweck und ihrer Komplexität, allerding haben sie ein gemeinsames Ziel: die Übersetzung des biologischen Wissens in ein mathematisches Modell zur Aufdeckung von Inkonsistenzen und Wissenslücken innerhalb der Rekonstruktionen durch computerbasierte Analysen. Während es für metabolische Netzwerke bereits gut entwickelte Rekonstruktionsansätze gibt, existieren derzeit nur wenige Ansätze für Signal-Transduktionsnetzwerke. In dieser Arbeit stelle ich eine Methode zur systematischen und komprimierten Rekonstruk- tion von Signal-Transduktionsnetzwerken vor – rxncon. Diese Methode hat zwei grundlegende Aspekte: Einerseits haben wir eine Sprache zur Rekonstruktion biologischer Netzwerke entwickelt, die die Probleme kombinatorischer Komplexität durch die Kombination von Zuständen während des Rekonstruktionsprozesses angeht. Diese kombinatorische Komplexität wird durch die Verwendung kontextfreier Grammatik und der Beschreibung der Daten auf derselben Ebene wie experimentelle Erkenntnisse umgangen. Andererseits haben wir eine computerbasierte Struktur zur Interpretation und zum Export entwickelt, welche es ermöglicht das rekonstruierte Wissen in mathematische Modelle und unterschiedliche Visualisierungsformate zu übersetzen. Dadurch sind wir in der Lage, erstens Signal-Transduktionsnetzwerke detailliert zu rekon- struieren, zweitens diese Netzwerke in ausführbare Boolesche Modelle zur Verbesserung, Evaluation und Validierung dieser Netzwerke zu übersetzen und drittens diese Netzwerke als Regelbasierte Modelle zu exportieren. Daher ermöglicht rxncon die Rekonstruktion, Validierung und Simulation von umfangreichen Signal-Transduktionsnetzwerken und verbindet dadurch den Rekonstruktionsprozess mit klassischen mathematischen Modellierungsansätzen. / Living organisms are complex systems of interacting components. A crucial step to understand those complex biological systems is the construction of biological networks that re ect our current knowledge of the system. The scope and coverage of different network reconstructions can differ, but they have one aim in common – to convert the knowledge into a mathematical model enabling computational analysis to nd possible inconsistencies and gaps. While reconstruction methods for metabolic networks are well established, only a few methods exist for reconstructing cellular signal- transduction networks. In this thesis, I present a method – rxncon – enabling a systematised and condensed reconstruction of signal-transduction networks. This method has two aspects. On the one hand, we developed a language for reconstructing biological networks. The language addresses the issue, that states are combined in signal-transduction networks, which create a large number of speci c states, generating highly complex structures. Due to the context-free grammar in the language and the description of the data on the same level of detail as biological ndings we can largely avoid the combinatorial complexity. On the other hand, we developed a framework for interpreting and exporting this knowledge into different mathematical models and visualisation formats, enabling a work ow to: 1) reconstruct mechanistic detailed signal-transduction network, 2) convert them into an executable Boolean model for evaluation, validation and improvement of the network and 3) export the reconstructed model into a rule-based model. Hence, rxncon has the potential to reconstruct, validate and simulate large-scale signalling networks – bridging large scale network reconstruction and classical mathematical modelling approaches.
4

Network Inference from Perturbation Data: Robustness, Identifiability and Experimental Design

Groß, Torsten 29 January 2021 (has links)
Hochdurchsatzverfahren quantifizieren eine Vielzahl zellulärer Komponenten, können aber selten deren Interaktionen beschreiben. Daher wurden in den letzten 20 Jahren verschiedenste Netzwerk-Rekonstruktionsmethoden entwickelt. Insbesondere Perturbationsdaten erlauben dabei Rückschlüsse über funktionelle Mechanismen in der Genregulierung, Signal Transduktion, intra-zellulärer Kommunikation und anderen Prozessen zu ziehen. Dennoch bleibt Netzwerkinferenz ein ungelöstes Problem, weil die meisten Methoden auf ungeeigneten Annahmen basieren und die Identifizierbarkeit von Netzwerkkanten nicht aufklären. Diesbezüglich beschreibt diese Dissertation eine neue Rekonstruktionsmethode, die auf einfachen Annahmen von Perturbationsausbreitung basiert. Damit ist sie in verschiedensten Zusammenhängen anwendbar und übertrifft andere Methoden in Standard-Benchmarks. Für MAPK und PI3K Signalwege in einer Adenokarzinom-Zellline generiert sie plausible Netzwerkhypothesen, die unterschiedliche Sensitivitäten von PI3K-Mutanten gegenüber verschiedener Inhibitoren überzeugend erklären. Weiterhin wird gezeigt, dass sich Netzwerk-Identifizierbarkeit durch ein intuitives Max-Flow Problem beschreiben lässt. Dieses analytische Resultat erlaubt effektive, identifizierbare Netzwerke zu ermitteln und das experimentelle Design aufwändiger Perturbationsexperimente zu optimieren. Umfangreiche Tests zeigen, dass der Ansatz im Vergleich zu zufällig generierten Perturbationssequenzen die Anzahl der für volle Identifizierbarkeit notwendigen Perturbationen auf unter ein Drittel senkt. Schließlich beschreibt die Dissertation eine mathematische Weiterentwicklung der Modular Response Analysis. Es wird gezeigt, dass sich das Problem als analytisch lösbare orthogonale Regression approximieren lässt. Dies erlaubt eine drastische Reduzierung des nummerischen Aufwands, womit sich deutlich größere Netzwerke rekonstruieren und neueste Hochdurchsatz-Perturbationsdaten auswerten lassen. / 'Omics' technologies provide extensive quantifications of components of biological systems but rarely characterize the interactions between them. To fill this gap, various network reconstruction methods have been developed over the past twenty years. Using perturbation data, these methods can deduce functional mechanisms in gene regulation, signal transduction, intra-cellular communication and many other cellular processes. Nevertheless, this reverse engineering problem remains essentially unsolved because inferred networks are often based on inapt assumptions, lack interpretability as well as a rigorous description of identifiability. To overcome these shortcoming, this thesis first presents a novel inference method which is based on a simple response logic. The underlying assumptions are so mild that the approach is suitable for a wide range of applications while also outperforming existing methods in standard benchmark data sets. For MAPK and PI3K signalling pathways in an adenocarcinoma cell line, it derived plausible network hypotheses, which explain distinct sensitivities of PI3K mutants to targeted inhibitors. Second, an intuitive maximum-flow problem is shown to describe identifiability of network interactions. This analytical result allows to devise identifiable effective network models in underdetermined settings and to optimize the design of costly perturbation experiments. Benchmarked on a database of human pathways, full network identifiability is obtained with less than a third of the perturbations that are needed in random experimental designs. Finally, the thesis presents mathematical advances within Modular Response Analysis (MRA), which is a popular framework to quantify network interaction strengths. It is shown that MRA can be approximated as an analytically solvable total least squares problem. This insight drastically reduces computational complexity, which allows to model much bigger networks and to handle novel large-scale perturbation data.

Page generated in 0.1202 seconds